ML Anthology
Authors
Search
About
Dezfouli, Amir
15 publications
NeurIPS
2025
3D-Prover: Diversity Driven Theorem Proving with Determinantal Point Processes
Sean Lamont
,
Christian Walder
,
Amir Dezfouli
,
Paul Montague
,
Michael Norrish
AAAI
2024
BAIT: Benchmarking (Embedding) Architectures for Interactive Theorem-Proving
Sean Lamont
,
Michael Norrish
,
Amir Dezfouli
,
Christian Walder
,
Paul Montague
NeurIPSW
2023
Cross-Entropy Estimators for Sequential Experiment Design with Reinforcement Learning
Tom Blau
,
Iadine Chades
,
Amir Dezfouli
,
Daniel M Steinberg
,
Edwin V. Bonilla
AAAI
2023
Mixed-Variable Black-Box Optimisation Using Value Proposal Trees
Yan Zuo
,
Vu Nguyen
,
Amir Dezfouli
,
David Alexander
,
Benjamin Ward Muir
,
Iadine Chades
NeurIPS
2023
The Contextual Lasso: Sparse Linear Models via Deep Neural Networks
Ryan Thompson
,
Amir Dezfouli
,
Robert Kohn
ICML
2023
Transformed Distribution Matching for Missing Value Imputation
He Zhao
,
Ke Sun
,
Amir Dezfouli
,
Edwin V. Bonilla
ICML
2022
Neural Network Poisson Models for Behavioural and Neural Spike Train Data
Moein Khajehnejad
,
Forough Habibollahi
,
Richard Nock
,
Ehsan Arabzadeh
,
Peter Dayan
,
Amir Dezfouli
ICML
2022
Optimizing Sequential Experimental Design with Deep Reinforcement Learning
Tom Blau
,
Edwin V. Bonilla
,
Iadine Chades
,
Amir Dezfouli
NeurIPS
2021
TacticZero: Learning to Prove Theorems from Scratch with Deep Reinforcement Learning
Minchao Wu
,
Michael Norrish
,
Christian Walder
,
Amir Dezfouli
NeurIPS
2019
Disentangled Behavioural Representations
Amir Dezfouli
,
Hassan Ashtiani
,
Omar Ghattas
,
Richard Nock
,
Peter Dayan
,
Cheng Soon Ong
JMLR
2019
Generic Inference in Latent Gaussian Process Models
Edwin V. Bonilla
,
Karl Krauth
,
Amir Dezfouli
NeurIPS
2018
Integrated Accounts of Behavioral and Neuroimaging Data Using Flexible Recurrent Neural Network Models
Amir Dezfouli
,
Richard Morris
,
Fabio T Ramos
,
Peter Dayan
,
Bernard Balleine
ICML
2018
Variational Network Inference: Strong and Stable with Concrete Support
Amir Dezfouli
,
Edwin Bonilla
,
Richard Nock
AISTATS
2017
Gray-Box Inference for Structured Gaussian Process Models
Pietro Galliani
,
Amir Dezfouli
,
Edwin V. Bonilla
,
Novi Quadrianto
NeurIPS
2015
Scalable Inference for Gaussian Process Models with Black-Box Likelihoods
Amir Dezfouli
,
Edwin V. Bonilla