Dick, Travis

22 publications

ICML 2025 Nearly Optimal Sample Complexity for Learning with Label Proportions Robert Istvan Busa-Fekete, Travis Dick, Claudio Gentile, Haim Kaplan, Tomer Koren, Uri Stemmer
NeurIPS 2025 Private Set Union with Multiple Contributions Travis Dick, Haim Kaplan, Alex Kulesza, Uri Stemmer, Ziteng Sun, Ananda Theertha Suresh
NeurIPS 2024 Auditing Privacy Mechanisms via Label Inference Attacks Róbert István Busa-Fekete, Travis Dick, Claudio Gentile, Andrés Muñoz Medina, Adam Smith, Marika Swanberg
NeurIPSW 2023 A New Framework for Measuring Re-Identification Risk Cj Carey, Travis Dick, Alessandro Epasto, Adel Javanmard, Josh Karlin, Shankar Kumar, Andres Munoz Medina, Vahab Mirrokni, Gabriel Nunes, Sergei Vassilvitskii, Peilin Zhong
NeurIPSW 2023 A Unified Analysis of Label Inference Attacks Andres Munoz Medina, Travis Dick, Claudio Gentile, Robert Istvan Busa-Fekete, Marika Swanberg
NeurIPS 2023 Better Private Linear Regression Through Better Private Feature Selection Travis Dick, Jennifer Gillenwater, Matthew Joseph
NeurIPS 2023 Easy Learning from Label Proportions Róbert Busa-Fekete, Heejin Choi, Travis Dick, Claudio Gentile, Andres Munoz Medina
ICML 2023 Learning-Augmented Private Algorithms for Multiple Quantile Release Mikhail Khodak, Kareem Amin, Travis Dick, Sergei Vassilvitskii
ICMLW 2023 Learning-Augmented Private Algorithms for Multiple Quantile Release Mikhail Khodak, Kareem Amin, Travis Dick, Sergei Vassilvitskii
ICML 2023 Subset-Based Instance Optimality in Private Estimation Travis Dick, Alex Kulesza, Ziteng Sun, Ananda Theertha Suresh
AISTATS 2020 Learning Piecewise Lipschitz Functions in Changing Environments Dravyansh Sharma, Maria-Florina Balcan, Travis Dick
ICLR 2020 Learning to Link Maria-Florina Balcan, Travis Dick, Manuel Lang
JMLR 2020 Random Smoothing Might Be Unable to Certify $\ell_\infty$ Robustness for High-Dimensional Images Avrim Blum, Travis Dick, Naren Manoj, Hongyang Zhang
UAI 2020 Semi-Bandit Optimization in the Dispersed Setting Maria-Florina Balcan, Travis Dick, Wesley Pegden
NeurIPS 2019 Differentially Private Covariance Estimation Kareem Amin, Travis Dick, Alex Kulesza, Andres Munoz, Sergei Vassilvitskii
NeurIPS 2019 Envy-Free Classification Maria-Florina F Balcan, Travis Dick, Ritesh Noothigattu, Ariel D Procaccia
NeurIPS 2018 Data-Driven Clustering via Parameterized Lloyd's Families Maria-Florina F Balcan, Travis Dick, Colin White
ICML 2018 Learning to Branch Maria-Florina Balcan, Travis Dick, Tuomas Sandholm, Ellen Vitercik
AISTATS 2017 Data Driven Resource Allocation for Distributed Learning Travis Dick, Mu Li, Venkata Krishna Pillutla, Colin White, Nina Balcan, Alexander J. Smola
ICML 2017 Differentially Private Clustering in High-Dimensional Euclidean Spaces Maria-Florina Balcan, Travis Dick, Yingyu Liang, Wenlong Mou, Hongyang Zhang
AAAI 2017 Label Efficient Learning by Exploiting Multi-Class Output Codes Maria-Florina Balcan, Travis Dick, Yishay Mansour
ICML 2014 Online Learning in Markov Decision Processes with Changing Cost Sequences Travis Dick, Andras Gyorgy, Csaba Szepesvari