Dohmatob, Elvis

31 publications

ICLR 2025 An Effective Theory of Bias Amplification Arjun Subramonian, Samuel Bell, Levent Sagun, Elvis Dohmatob
ICLR 2025 Beyond Model Collapse: Scaling up with Synthesized Data Requires Verification Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, Julia Kempe
ICML 2025 Improving the Scaling Laws of Synthetic Data with Deliberate Practice Reyhane Askari-Hemmat, Mohammad Pezeshki, Elvis Dohmatob, Florian Bordes, Pietro Astolfi, Melissa Hall, Jakob Verbeek, Michal Drozdzal, Adriana Romero-Soriano
ICLR 2025 Strong Model Collapse Elvis Dohmatob, Yunzhen Feng, Arjun Subramonian, Julia Kempe
ICLR 2025 The Pitfalls of Memorization: When Memorization Hurts Generalization Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, Pascal Vincent
NeurIPS 2025 Understanding SoftMax Attention Layers:\\ Exact Mean-Field Analysis on a Toy Problem Elvis Dohmatob
ICML 2024 A Tale of Tails: Model Collapse as a Change of Scaling Laws Elvis Dohmatob, Yunzhen Feng, Pu Yang, Francois Charton, Julia Kempe
ICLRW 2024 A Tale of Tails: Model Collapse as a Change of Scaling Laws Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, Julia Kempe
ICMLW 2024 Beyond Model Collapse: Scaling up with Synthesized Data Requires Reinforcement Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, Julia Kempe
ICML 2024 Consistent Adversarially Robust Linear Classification: Non-Parametric Setting Elvis Dohmatob
NeurIPS 2024 Model Collapse Demystified: The Case of Regression Elvis Dohmatob, Yুনzhen Feng, Julia Kempe
ICML 2024 Precise Accuracy / Robustness Tradeoffs in Regression: Case of General Norms Elvis Dohmatob, Meyer Scetbon
ICLR 2024 Scaling Laws for Associative Memories Vivien Cabannes, Elvis Dohmatob, Alberto Bietti
NeurIPSW 2024 The Pitfalls of Memorization: When Memorization Hinders Generalization Reza Bayat, Mohammad Pezeshki, Elvis Dohmatob, David Lopez-Paz, Pascal Vincent
NeurIPSW 2023 A Different Route to Exponential Storage Capacity Elvis Dohmatob
NeurIPSW 2023 Associative Memories with Heavy-Tailed Data Vivien Cabannes, Elvis Dohmatob, Alberto Bietti
NeurIPSW 2023 Associative Memories with Heavy-Tailed Data Vivien Cabannes, Elvis Dohmatob, Alberto Bietti
ICLR 2023 Contextual Bandits with Concave Rewards, and an Application to Fair Ranking Virginie Do, Elvis Dohmatob, Matteo Pirotta, Alessandro Lazaric, Nicolas Usunier
AISTATS 2023 Origins of Low-Dimensional Adversarial Perturbations Elvis Dohmatob, Chuan Guo, Morgane Goibert
AISTATS 2023 Robust Linear Regression: Gradient-Descent, Early-Stopping, and Beyond Meyer Scetbon, Elvis Dohmatob
NeurIPSW 2022 An Adversarial Robustness Perspective on the Topology of Neural Networks Morgane Goibert, Elvis Dohmatob, Thomas Ricatte
ICML 2022 Scalable MCMC Sampling for Nonsymmetric Determinantal Point Processes Insu Han, Mike Gartrell, Elvis Dohmatob, Amin Karbasi
ICLR 2022 Scalable Sampling for Nonsymmetric Determinantal Point Processes Insu Han, Mike Gartrell, Jennifer Gillenwater, Elvis Dohmatob, Amin Karbasi
ICLR 2021 Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes Mike Gartrell, Insu Han, Elvis Dohmatob, Jennifer Gillenwater, Victor-Emmanuel Brunel
AAAI 2020 Distributionally Robust Counterfactual Risk Minimization Louis Faury, Ugo Tanielian, Elvis Dohmatob, Elena Smirnova, Flavian Vasile
ICML 2020 Learning Disconnected Manifolds: A No GAN’s Land Ugo Tanielian, Thibaut Issenhuth, Elvis Dohmatob, Jeremie Mary
NeurIPS 2020 On the Convergence of Smooth Regularized Approximate Value Iteration Schemes Elena Smirnova, Elvis Dohmatob
ICMLW 2019 Distributionally Robust Reinforcement Learning Elena Smirnova, Elvis Dohmatob, Jérémie Mary
ICML 2019 Generalized No Free Lunch Theorem for Adversarial Robustness Elvis Dohmatob
NeurIPS 2019 Learning Nonsymmetric Determinantal Point Processes Mike Gartrell, Victor-Emmanuel Brunel, Elvis Dohmatob, Syrine Krichene
NeurIPS 2016 Learning Brain Regions via Large-Scale Online Structured Sparse Dictionary Learning Elvis Dohmatob, Arthur Mensch, Gael Varoquaux, Bertrand Thirion