Domingo-Enrich, Carles

19 publications

ICLR 2025 Adjoint Matching: Fine-Tuning Flow and Diffusion Generative Models with Memoryless Stochastic Optimal Control Carles Domingo-Enrich, Michal Drozdzal, Brian Karrer, Ricky T. Q. Chen
ICML 2025 Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching Aaron J Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Daniel S. Levine, Brandon M Wood, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, Ricky T. Q. Chen
ICLRW 2025 Adjoint Sampling: Highly Scalable Diffusion Samplers via Adjoint Matching Aaron J Havens, Benjamin Kurt Miller, Bing Yan, Carles Domingo-Enrich, Anuroop Sriram, Daniel S. Levine, Brandon M Wood, Bin Hu, Brandon Amos, Brian Karrer, Xiang Fu, Guan-Horng Liu, Ricky T. Q. Chen
ICML 2025 Conditioning Diffusions Using Malliavin Calculus Jakiw Pidstrigach, Elizabeth Louise Baker, Carles Domingo-Enrich, George Deligiannidis, Nikolas Nüsken
NeurIPS 2025 Trust Region Constrained Measure Transport in Path Space for Stochastic Optimal Control and Inference Denis Blessing, Julius Berner, Lorenz Richter, Carles Domingo-Enrich, Yuanqi Du, Arash Vahdat, Gerhard Neumann
NeurIPS 2025 Value Gradient Guidance for Flow Matching Alignment Zhen Liu, Tim Z. Xiao, Carles Domingo-Enrich, Weiyang Liu, Dinghuai Zhang
UAI 2024 Neural Optimal Transport with Lagrangian Costs Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos
NeurIPS 2024 Stochastic Optimal Control Matching Carles Domingo-Enrich, Jiequn Han, Brandon Amos, Joan Bruna, Ricky T. Q. Chen
TMLR 2023 An Explicit Expansion of the Kullback-Leibler Divergence Along Its Fisher-Rao Gradient Flow Carles Domingo-Enrich, Aram-Alexandre Pooladian
AISTATS 2023 Compress Then Test: Powerful Kernel Testing in Near-Linear Time Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey
ICLR 2023 Learning with Stochastic Orders Carles Domingo-Enrich, Yair Schiff, Youssef Mroueh
ICML 2023 Multisample Flow Matching: Straightening Flows with Minibatch Couplings Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron Lipman, Ricky T. Q. Chen
ICMLW 2023 Neural Optimal Transport with Lagrangian Costs Aram-Alexandre Pooladian, Carles Domingo-Enrich, Ricky T. Q. Chen, Brandon Amos
COLT 2022 Depth and Feature Learning Are Provably Beneficial for Neural Network Discriminators Carles Domingo-Enrich
ICLR 2022 Tighter Sparse Approximation Bounds for ReLU Neural Networks Carles Domingo-Enrich, Youssef Mroueh
ICLR 2021 Average-Case Acceleration for Bilinear Games and Normal Matrices Carles Domingo-Enrich, Fabian Pedregosa, Damien Scieur
ICML 2021 On Energy-Based Models with Overparametrized Shallow Neural Networks Carles Domingo-Enrich, Alberto Bietti, Eric Vanden-Eijnden, Joan Bruna
NeurIPS 2020 A Mean-Field Analysis of Two-Player Zero-Sum Games Carles Domingo-Enrich, Samy Jelassi, Arthur Mensch, Grant Rotskoff, Joan Bruna
ICML 2020 Extra-Gradient with Player Sampling for Faster Convergence in N-Player Games Samy Jelassi, Carles Domingo-Enrich, Damien Scieur, Arthur Mensch, Joan Bruna