ML Anthology
Authors
Search
About
Domingos, Pedro M
71 publications
NeurIPS
2018
Submodular Field Grammars: Representation, Inference, and Application to Image Parsing
Abram L. Friesen
,
Pedro M Domingos
ICLR
2017
Compositional Kernel Machines
Robert Gens
,
Pedro M. Domingos
AAAI
2016
Learning Tractable Probabilistic Models for Fault Localization
Aniruddh Nath
,
Pedro M. Domingos
AAAI
2015
Learning Relational Sum-Product Networks
Aniruddh Nath
,
Pedro M. Domingos
UAI
2015
Learning and Inference in Tractable Probabilistic Knowledge Bases
Mathias Niepert
,
Pedro M. Domingos
AISTATS
2015
On Theoretical Properties of Sum-Product Networks
Robert Peharz
,
Sebastian Tschiatschek
,
Franz Pernkopf
,
Pedro M. Domingos
IJCAI
2015
Recursive Decomposition for Nonconvex Optimization - IJCAI-15 Distinguished Paper
Abram L. Friesen
,
Pedro M. Domingos
AAAI
2014
Approximate Lifting Techniques for Belief Propagation
Parag Singla
,
Aniruddh Nath
,
Pedro M. Domingos
NeurIPS
2014
Deep Symmetry Networks
Robert Gens
,
Pedro M Domingos
UAI
2013
Structured Message Passing
Vibhav Gogate
,
Pedro M. Domingos
AAAI
2012
A Tractable First-Order Probabilistic Logic
Pedro M. Domingos
,
William Austin Webb
UAI
2011
Approximation by Quantization
Vibhav Gogate
,
Pedro M. Domingos
AAAI
2011
Coarse-to-Fine Inference and Learning for First-Order Probabilistic Models
ChloƩ Kiddon
,
Pedro M. Domingos
MLJ
2011
Guest Editorial to the Special Issue on Inductive Logic Programming, Mining and Learning in Graphs and Statistical Relational Learning
Hendrik Blockeel
,
Karsten M. Borgwardt
,
Luc De Raedt
,
Pedro M. Domingos
,
Kristian Kersting
,
Xifeng Yan
UAI
2011
Probabilistic Theorem Proving
Vibhav Gogate
,
Pedro M. Domingos
UAI
2011
Sum-Product Networks: A New Deep Architecture
Hoifung Poon
,
Pedro M. Domingos
ICML
2010
Bottom-up Learning of Markov Network Structure
Jesse Davis
,
Pedro M. Domingos
AAAI
2010
Efficient Belief Propagation for Utility Maximization and Repeated Inference
Aniruddh Nath
,
Pedro M. Domingos
AAAI
2010
Efficient Lifting for Online Probabilistic Inference
Aniruddh Nath
,
Pedro M. Domingos
UAI
2010
Formula-Based Probabilistic Inference
Vibhav Gogate
,
Pedro M. Domingos
ICML
2010
Learning Markov Logic Networks Using Structural Motifs
Stanley Kok
,
Pedro M. Domingos
ICML
2009
Deep Transfer via Second-Order Markov Logic
Jesse Davis
,
Pedro M. Domingos
ICML
2009
Learning Markov Logic Network Structure via Hypergraph Lifting
Stanley Kok
,
Pedro M. Domingos
AAAI
2008
A General Method for Reducing the Complexity of Relational Inference and Its Application to MCMC
Hoifung Poon
,
Pedro M. Domingos
,
Marc Sumner
ECML-PKDD
2008
Extracting Semantic Networks from Text via Relational Clustering
Stanley Kok
,
Pedro M. Domingos
AAAI
2008
Hybrid Markov Logic Networks
Jue Wang
,
Pedro M. Domingos
UAI
2008
Learning Arithmetic Circuits
Daniel Lowd
,
Pedro M. Domingos
AAAI
2008
Lifted First-Order Belief Propagation
Parag Singla
,
Pedro M. Domingos
MLJ
2008
Structured Machine Learning: The Next Ten Years
Thomas G. Dietterich
,
Pedro M. Domingos
,
Lise Getoor
,
Stephen H. Muggleton
,
Prasad Tadepalli
AAAI
2007
Joint Inference in Information Extraction
Hoifung Poon
,
Pedro M. Domingos
UAI
2007
Markov Logic in Infinite Domains
Parag Singla
,
Pedro M. Domingos
IJCAI
2007
Recursive Random Fields
Daniel Lowd
,
Pedro M. Domingos
ICML
2007
Statistical Predicate Invention
Stanley Kok
,
Pedro M. Domingos
MLJ
2006
Markov Logic Networks
Matthew Richardson
,
Pedro M. Domingos
AAAI
2006
Memory-Efficient Inference in Relational Domains
Parag Singla
,
Pedro M. Domingos
AAAI
2006
Sound and Efficient Inference with Probabilistic and Deterministic Dependencies
Hoifung Poon
,
Pedro M. Domingos
AAAI
2006
Unifying Logical and Statistical AI
Pedro M. Domingos
,
Stanley Kok
,
Hoifung Poon
,
Matthew Richardson
,
Parag Singla
IJCAI
2005
Collective Object Identification
Parag Singla
,
Pedro M. Domingos
AAAI
2005
Discriminative Training of Markov Logic Networks
Parag Singla
,
Pedro M. Domingos
ICML
2005
Learning the Structure of Markov Logic Networks
Stanley Kok
,
Pedro M. Domingos
ICML
2005
Naive Bayes Models for Probability Estimation
Daniel Lowd
,
Pedro M. Domingos
ICML
2004
Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood
Daniel Grossman
,
Pedro M. Domingos
ALT
2004
Learning, Logic, and Probability: A Unified View
Pedro M. Domingos
ECML-PKDD
2004
Real-World Learning with Markov Logic Networks
Pedro M. Domingos
IJCAI
2003
Automatically Personalizing User Interfaces
Daniel S. Weld
,
Corin R. Anderson
,
Pedro M. Domingos
,
Oren Etzioni
,
Krzysztof Gajos
,
Tessa A. Lau
,
Steven A. Wolfman
MLJ
2003
Learning to Match the Schemas of Data Sources: A Multistrategy Approach
AnHai Doan
,
Pedro M. Domingos
,
Alon Y. Halevy
ICML
2003
Learning with Knowledge from Multiple Experts
Matthew Richardson
,
Pedro M. Domingos
MLJ
2003
Programming by Demonstration Using Version Space Algebra
Tessa A. Lau
,
Steven A. Wolfman
,
Pedro M. Domingos
,
Daniel S. Weld
MLJ
2003
Tree Induction for Probability-Based Ranking
Foster J. Provost
,
Pedro M. Domingos
AAAI
2002
Representing and Reasoning About Mappings Between Domain Models
Jayant Madhavan
,
Philip A. Bernstein
,
Pedro M. Domingos
,
Alon Y. Halevy
ICML
2001
A General Method for Scaling up Machine Learning Algorithms and Its Application to Clustering
Pedro M. Domingos
,
Geoff Hulten
IJCAI
2001
Adaptive Web Navigation for Wireless Devices
Corin R. Anderson
,
Pedro M. Domingos
,
Daniel S. Weld
ICML
2000
A Unifeid Bias-Variance Decomposition and Its Applications
Pedro M. Domingos
AAAI
2000
A Unified Bias-Variance Decomposition for Zero-One and Squared Loss
Pedro M. Domingos
ICML
2000
Bayesian Averaging of Classifiers and the Overfitting Problem
Pedro M. Domingos
ECML-PKDD
2000
Beyond Occam's Razor: Process-Oriented Evaluation
Pedro M. Domingos
ICML
2000
Version Space Algebra and Its Application to Programming by Demonstration
Tessa A. Lau
,
Pedro M. Domingos
,
Daniel S. Weld
IJCAI
1999
Process-Oriented Estimation of Generalization Error
Pedro M. Domingos
AISTATS
1999
Process-Oriented Evaluation: The Next Step
Pedro M. Domingos
ICML
1998
A Process-Oriented Heuristic for Model Selection
Pedro M. Domingos
AAAI
1997
A Comparison of Model Averaging Methods in Foreign Exchange Prediction
Pedro M. Domingos
ICML
1997
Knowledge Acquisition Form Examples Vis Multiple Models
Pedro M. Domingos
AAAI
1997
Learning Multiple Models Without Sacrificing Comprehensibility
Pedro M. Domingos
MLJ
1997
On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss
Pedro M. Domingos
,
Michael J. Pazzani
ICML
1996
Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier
Pedro M. Domingos
,
Michael J. Pazzani
AAAI
1996
Fast Discovery of Simple Rules
Pedro M. Domingos
AAAI
1996
Multistrategy Learning: A Case Study
Pedro M. Domingos
AAAI
1996
Simple Bayesian Classifiers Do Not Assume Independence
Pedro M. Domingos
,
Michael J. Pazzani
AAAI
1996
Towards a Unified Approach to Concept Learning
Pedro M. Domingos
MLJ
1996
Unifying Instance-Based and Rule-Based Induction
Pedro M. Domingos
IJCAI
1995
Rule Induction and Instance-Based Learning: A Unified Approach
Pedro M. Domingos