Domingos, Pedro M

71 publications

NeurIPS 2018 Submodular Field Grammars: Representation, Inference, and Application to Image Parsing Abram L. Friesen, Pedro M Domingos
ICLR 2017 Compositional Kernel Machines Robert Gens, Pedro M. Domingos
AAAI 2016 Learning Tractable Probabilistic Models for Fault Localization Aniruddh Nath, Pedro M. Domingos
AAAI 2015 Learning Relational Sum-Product Networks Aniruddh Nath, Pedro M. Domingos
UAI 2015 Learning and Inference in Tractable Probabilistic Knowledge Bases Mathias Niepert, Pedro M. Domingos
AISTATS 2015 On Theoretical Properties of Sum-Product Networks Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, Pedro M. Domingos
IJCAI 2015 Recursive Decomposition for Nonconvex Optimization - IJCAI-15 Distinguished Paper Abram L. Friesen, Pedro M. Domingos
AAAI 2014 Approximate Lifting Techniques for Belief Propagation Parag Singla, Aniruddh Nath, Pedro M. Domingos
NeurIPS 2014 Deep Symmetry Networks Robert Gens, Pedro M Domingos
UAI 2013 Structured Message Passing Vibhav Gogate, Pedro M. Domingos
AAAI 2012 A Tractable First-Order Probabilistic Logic Pedro M. Domingos, William Austin Webb
UAI 2011 Approximation by Quantization Vibhav Gogate, Pedro M. Domingos
AAAI 2011 Coarse-to-Fine Inference and Learning for First-Order Probabilistic Models ChloƩ Kiddon, Pedro M. Domingos
MLJ 2011 Guest Editorial to the Special Issue on Inductive Logic Programming, Mining and Learning in Graphs and Statistical Relational Learning Hendrik Blockeel, Karsten M. Borgwardt, Luc De Raedt, Pedro M. Domingos, Kristian Kersting, Xifeng Yan
UAI 2011 Probabilistic Theorem Proving Vibhav Gogate, Pedro M. Domingos
UAI 2011 Sum-Product Networks: A New Deep Architecture Hoifung Poon, Pedro M. Domingos
ICML 2010 Bottom-up Learning of Markov Network Structure Jesse Davis, Pedro M. Domingos
AAAI 2010 Efficient Belief Propagation for Utility Maximization and Repeated Inference Aniruddh Nath, Pedro M. Domingos
AAAI 2010 Efficient Lifting for Online Probabilistic Inference Aniruddh Nath, Pedro M. Domingos
UAI 2010 Formula-Based Probabilistic Inference Vibhav Gogate, Pedro M. Domingos
ICML 2010 Learning Markov Logic Networks Using Structural Motifs Stanley Kok, Pedro M. Domingos
ICML 2009 Deep Transfer via Second-Order Markov Logic Jesse Davis, Pedro M. Domingos
ICML 2009 Learning Markov Logic Network Structure via Hypergraph Lifting Stanley Kok, Pedro M. Domingos
AAAI 2008 A General Method for Reducing the Complexity of Relational Inference and Its Application to MCMC Hoifung Poon, Pedro M. Domingos, Marc Sumner
ECML-PKDD 2008 Extracting Semantic Networks from Text via Relational Clustering Stanley Kok, Pedro M. Domingos
AAAI 2008 Hybrid Markov Logic Networks Jue Wang, Pedro M. Domingos
UAI 2008 Learning Arithmetic Circuits Daniel Lowd, Pedro M. Domingos
AAAI 2008 Lifted First-Order Belief Propagation Parag Singla, Pedro M. Domingos
MLJ 2008 Structured Machine Learning: The Next Ten Years Thomas G. Dietterich, Pedro M. Domingos, Lise Getoor, Stephen H. Muggleton, Prasad Tadepalli
AAAI 2007 Joint Inference in Information Extraction Hoifung Poon, Pedro M. Domingos
UAI 2007 Markov Logic in Infinite Domains Parag Singla, Pedro M. Domingos
IJCAI 2007 Recursive Random Fields Daniel Lowd, Pedro M. Domingos
ICML 2007 Statistical Predicate Invention Stanley Kok, Pedro M. Domingos
MLJ 2006 Markov Logic Networks Matthew Richardson, Pedro M. Domingos
AAAI 2006 Memory-Efficient Inference in Relational Domains Parag Singla, Pedro M. Domingos
AAAI 2006 Sound and Efficient Inference with Probabilistic and Deterministic Dependencies Hoifung Poon, Pedro M. Domingos
AAAI 2006 Unifying Logical and Statistical AI Pedro M. Domingos, Stanley Kok, Hoifung Poon, Matthew Richardson, Parag Singla
IJCAI 2005 Collective Object Identification Parag Singla, Pedro M. Domingos
AAAI 2005 Discriminative Training of Markov Logic Networks Parag Singla, Pedro M. Domingos
ICML 2005 Learning the Structure of Markov Logic Networks Stanley Kok, Pedro M. Domingos
ICML 2005 Naive Bayes Models for Probability Estimation Daniel Lowd, Pedro M. Domingos
ICML 2004 Learning Bayesian Network Classifiers by Maximizing Conditional Likelihood Daniel Grossman, Pedro M. Domingos
ALT 2004 Learning, Logic, and Probability: A Unified View Pedro M. Domingos
ECML-PKDD 2004 Real-World Learning with Markov Logic Networks Pedro M. Domingos
IJCAI 2003 Automatically Personalizing User Interfaces Daniel S. Weld, Corin R. Anderson, Pedro M. Domingos, Oren Etzioni, Krzysztof Gajos, Tessa A. Lau, Steven A. Wolfman
MLJ 2003 Learning to Match the Schemas of Data Sources: A Multistrategy Approach AnHai Doan, Pedro M. Domingos, Alon Y. Halevy
ICML 2003 Learning with Knowledge from Multiple Experts Matthew Richardson, Pedro M. Domingos
MLJ 2003 Programming by Demonstration Using Version Space Algebra Tessa A. Lau, Steven A. Wolfman, Pedro M. Domingos, Daniel S. Weld
MLJ 2003 Tree Induction for Probability-Based Ranking Foster J. Provost, Pedro M. Domingos
AAAI 2002 Representing and Reasoning About Mappings Between Domain Models Jayant Madhavan, Philip A. Bernstein, Pedro M. Domingos, Alon Y. Halevy
ICML 2001 A General Method for Scaling up Machine Learning Algorithms and Its Application to Clustering Pedro M. Domingos, Geoff Hulten
IJCAI 2001 Adaptive Web Navigation for Wireless Devices Corin R. Anderson, Pedro M. Domingos, Daniel S. Weld
ICML 2000 A Unifeid Bias-Variance Decomposition and Its Applications Pedro M. Domingos
AAAI 2000 A Unified Bias-Variance Decomposition for Zero-One and Squared Loss Pedro M. Domingos
ICML 2000 Bayesian Averaging of Classifiers and the Overfitting Problem Pedro M. Domingos
ECML-PKDD 2000 Beyond Occam's Razor: Process-Oriented Evaluation Pedro M. Domingos
ICML 2000 Version Space Algebra and Its Application to Programming by Demonstration Tessa A. Lau, Pedro M. Domingos, Daniel S. Weld
IJCAI 1999 Process-Oriented Estimation of Generalization Error Pedro M. Domingos
AISTATS 1999 Process-Oriented Evaluation: The Next Step Pedro M. Domingos
ICML 1998 A Process-Oriented Heuristic for Model Selection Pedro M. Domingos
AAAI 1997 A Comparison of Model Averaging Methods in Foreign Exchange Prediction Pedro M. Domingos
ICML 1997 Knowledge Acquisition Form Examples Vis Multiple Models Pedro M. Domingos
AAAI 1997 Learning Multiple Models Without Sacrificing Comprehensibility Pedro M. Domingos
MLJ 1997 On the Optimality of the Simple Bayesian Classifier Under Zero-One Loss Pedro M. Domingos, Michael J. Pazzani
ICML 1996 Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier Pedro M. Domingos, Michael J. Pazzani
AAAI 1996 Fast Discovery of Simple Rules Pedro M. Domingos
AAAI 1996 Multistrategy Learning: A Case Study Pedro M. Domingos
AAAI 1996 Simple Bayesian Classifiers Do Not Assume Independence Pedro M. Domingos, Michael J. Pazzani
AAAI 1996 Towards a Unified Approach to Concept Learning Pedro M. Domingos
MLJ 1996 Unifying Instance-Based and Rule-Based Induction Pedro M. Domingos
IJCAI 1995 Rule Induction and Instance-Based Learning: A Unified Approach Pedro M. Domingos