Drineas, Petros

26 publications

ICML 2025 Stacey: Promoting Stochastic Steepest Descent via Accelerated $\ell_p$-Smooth Nonconvex Optimization Xinyu Luo, Site Bai, Bolian Li, Petros Drineas, Ruqi Zhang, Brian Bullins
NeurIPS 2025 Structure-Aware Spectral Sparsification via Uniform Edge Sampling Kaiwen He, Petros Drineas, Rajiv Khanna
CVPR 2024 Patch2Self2: Self-Supervised Denoising on Coresets via Matrix Sketching Shreyas Fadnavis, Agniva Chowdhury, Joshua Batson, Petros Drineas, Eleftherios Garyfallidis
NeurIPS 2024 The Space Complexity of Approximating Logistic Loss Gregory Dexter, Petros Drineas, Rajiv Khanna
NeurIPS 2023 Refined Mechanism Design for Approximately Structured Priors via Active Regression Christos Boutsikas, Petros Drineas, Marios Mertzanidis, Alexandros Psomas, Paritosh Verma
NeurIPS 2023 Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile Streaming Gregory Dexter, Petros Drineas, David Woodruff, Taisuke Yasuda
JMLR 2022 Faster Randomized Interior Point Methods for Tall/Wide Linear Programs Agniva Chowdhury, Gregory Dexter, Palma London, Haim Avron, Petros Drineas
ICML 2022 On the Convergence of Inexact Predictor-Corrector Methods for Linear Programming Gregory Dexter, Agniva Chowdhury, Haim Avron, Petros Drineas
NeurIPS 2020 Faster Randomized Infeasible Interior Point Methods for Tall/Wide Linear Programs Agniva Chowdhury, Palma London, Haim Avron, Petros Drineas
UAI 2019 Randomized Iterative Algorithms for Fisher Discriminant Analysis Agniva Chowdhury, Jiasen Yang, Petros Drineas
ICML 2018 An Iterative, Sketching-Based Framework for Ridge Regression Agniva Chowdhury, Jiasen Yang, Petros Drineas
JMLR 2017 Recovering PCA and Sparse PCA via Hybrid-(l1,l2) Sparse Sampling of Data Elements Abhisek Kundu, Petros Drineas, Malik Magdon-Ismail
NeurIPS 2015 Approximating Sparse PCA from Incomplete Data Abhisek Kundu, Petros Drineas, Malik Magdon-Ismail
NeurIPS 2015 Column Selection via Adaptive Sampling Saurabh Paul, Malik Magdon-Ismail, Petros Drineas
AISTATS 2015 Feature Selection for Linear SVM with Provable Guarantees Saurabh Paul, Malik Magdon-Ismail, Petros Drineas
ECML-PKDD 2014 Deterministic Feature Selection for Regularized Least Squares Classification Saurabh Paul, Petros Drineas
AISTATS 2013 Random Projections for Support Vector Machines Saurabh Paul, Christos Boutsidis, Malik Magdon-Ismail, Petros Drineas
JMLR 2012 Fast Approximation of Matrix Coherence and Statistical Leverage Petros Drineas, Malik Magdon-Ismail, Michael W. Mahoney, David P. Woodruff
ICML 2012 Fast Approximation of Matrix Coherence and Statistical Leverage Michael W. Mahoney, Petros Drineas, Malik Magdon-Ismail, David P. Woodruff
NeurIPS 2011 Sparse Features for PCA-like Linear Regression Christos Boutsidis, Petros Drineas, Malik Magdon-Ismail
NeurIPS 2010 Random Projections for $k$-Means Clustering Christos Boutsidis, Anastasios Zouzias, Petros Drineas
NeurIPS 2009 Unsupervised Feature Selection for the $k$-Means Clustering Problem Christos Boutsidis, Petros Drineas, Michael W. Mahoney
COLT 2005 Approximating a Gram Matrix for Improved Kernel-Based Learning Petros Drineas, Michael W. Mahoney
CVPR 2005 Energy Minimization via Graph Cuts: Settling What Is Possible Daniel Freedman, Petros Drineas
JMLR 2005 On the Nystrom Method for Approximating a Gram Matrix for Improved Kernel-Based Learning Petros Drineas, Michael W. Mahoney
MLJ 2004 Clustering Large Graphs via the Singular Value Decomposition Petros Drineas, Alan M. Frieze, Ravi Kannan, Santosh S. Vempala, V. Vinay