ML Anthology
Authors
Search
About
Drton, Mathias
30 publications
UAI
2025
Causal Discovery for Linear Non-Gaussian Models with Disjoint Cycles
Mathias Drton
,
Marina Garrote-López
,
Niko Nikov
,
Elina Robeva
,
Y. Samuel Wang
ICML
2025
Causal Effect Identification in lvLiNGAM from Higher-Order Cumulants
Daniele Tramontano
,
Yaroslav Kivva
,
Saber Salehkaleybar
,
Negar Kiyavash
,
Mathias Drton
UAI
2025
Nonlinear Causal Discovery for Grouped Data
Konstantin Göbler
,
Tobias Windisch
,
Mathias Drton
AISTATS
2025
Robust Score Matching
Richard Schwank
,
Andrew McCormack
,
Mathias Drton
CLeaR
2024
$\texttt{causalAssembly}$: Generating Realistic Production Data for Benchmarking Causal Discovery
Konstantin Göbler
,
Tobias Windisch
,
Mathias Drton
,
Tim Pychynski
,
Martin Roth
,
Steffen Sonntag
ICML
2024
Causal Effect Identification in LiNGAM Models with Latent Confounders
Daniele Tramontano
,
Yaroslav Kivva
,
Saber Salehkaleybar
,
Mathias Drton
,
Negar Kiyavash
CLeaR
2024
Dual Likelihood for Causal Inference Under Structure Uncertainty
David Strieder
,
Mathias Drton
PGM
2024
Identifying Total Causal Effects in Linear Models Under Partial Homoscedasticity
David Strieder
,
Mathias Drton
PGM
2024
Kernel-Based Differentiable Learning of Non-Parametric Directed Acyclic Graphical Models
Yurou Liang
,
Oleksandr Zadorozhnyi
,
Mathias Drton
CLeaR
2024
On the Lasso for Graphical Continuous Lyapunov Models
Philipp Dettling
,
Mathias Drton
,
Mladen Kolar
JMLR
2023
Causal Discovery with Unobserved Confounding and Non-Gaussian Data
Y. Samuel Wang
,
Mathias Drton
CLeaR
2023
Directed Graphical Models and Causal Discovery for Zero-Inflated Data
Shiqing Yu
,
Mathias Drton
,
Ali Shojaie
LoG
2023
Interaction Models and Generalized Score Matching for Compositional Data
Shiqing Yu
,
Mathias Drton
,
Ali Shojaie
AISTATS
2023
Rank-Based Causal Discovery for Post-Nonlinear Models
Grigor Keropyan
,
David Strieder
,
Mathias Drton
NeurIPS
2023
Unpaired Multi-Domain Causal Representation Learning
Nils Sturma
,
Chandler Squires
,
Mathias Drton
,
Caroline Uhler
PGM
2022
Graphical Representations for Algebraic Constraints of Linear Structural Equations Models
Thijs Ommen
,
Mathias Drton
UAI
2022
Learning Linear Non-Gaussian Polytree Models
Daniele Tramontano
,
Anthea Monod
,
Mathias Drton
UAI
2021
Confidence in Causal Discovery with Linear Causal Models
David Strieder
,
Tobias Freidling
,
Stefan Haffner
,
Mathias Drton
UAI
2020
Structure Learning for Cyclic Linear Causal Models
Carlos Amendola
,
Philipp Dettling
,
Mathias Drton
,
Federica Onori
,
Jun Wu
JMLR
2019
Generalized Score Matching for Non-Negative Data
Shiqing Yu
,
Mathias Drton
,
Ali Shojaie
NeurIPS
2018
Algebraic Tests of General Gaussian Latent Tree Models
Dennis Leung
,
Mathias Drton
AISTATS
2018
Graphical Models for Non-Negative Data Using Generalized Score Matching
Shiqing Yu
,
Mathias Drton
,
Ali Shojaie
JMLR
2013
PC Algorithm for Nonparanormal Graphical Models
Naftali Harris
,
Mathias Drton
NeurIPS
2012
Nonparametric Reduced Rank Regression
Rina Foygel
,
Michael Horrell
,
Mathias Drton
,
John D. Lafferty
NeurIPS
2010
Extended Bayesian Information Criteria for Gaussian Graphical Models
Rina Foygel
,
Mathias Drton
JMLR
2009
Computing Maximum Likelihood Estimates in Recursive Linear Models with Correlated Errors
Mathias Drton
,
Michael Eichler
,
Thomas S. Richardson
UAI
2009
Robust Graphical Modeling with T-Distributions
Michael Finegold
,
Mathias Drton
JMLR
2008
Graphical Methods for Efficient Likelihood Inference in Gaussian Covariance Models
Mathias Drton
,
Thomas S. Richardson
UAI
2004
Iterative Conditional Fitting for Gaussian Ancestral Graph Models
Mathias Drton
,
Thomas S. Richardson
UAI
2003
A New Algorithm for Maximum Likelihood Estimation in Gaussian Graphical Models for Marginal Independence
Mathias Drton
,
Thomas S. Richardson