Du, Simon

30 publications

COLT 2025 Anytime Acceleration of Gradient Descent Zihan Zhang, Jason Lee, Simon Du, Yuxin Chen
AISTATS 2023 Blessing of Class Diversity in Pre-Training Yulai Zhao, Jianshu Chen, Simon Du
COLT 2023 Breaking the Curse of Multiagents in a Large State Space: RL in Markov Games with Independent Linear Function Approximation Qiwen Cui, Kaiqing Zhang, Simon Du
NeurIPSW 2023 JoMA: Demystifying Multilayer Transformers via JOint Dynamics of MLP and Attention Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, Simon Du
COLT 2023 Over-Parameterization Exponentially Slows Down Gradient Descent for Learning a Single Neuron Weihang Xu, Simon Du
AISTATS 2022 Gap-Dependent Bounds for Two-Player Markov Games Zehao Dou, Zhuoran Yang, Zhaoran Wang, Simon Du
AISTATS 2022 Provably Efficient Policy Optimization for Two-Player Zero-Sum Markov Games Yulai Zhao, Yuandong Tian, Jason Lee, Simon Du
ICML 2022 Active Multi-Task Representation Learning Yifang Chen, Kevin Jamieson, Simon Du
ICML 2022 Denoised MDPs: Learning World Models Better than the World Itself Tongzhou Wang, Simon Du, Antonio Torralba, Phillip Isola, Amy Zhang, Yuandong Tian
ICML 2022 First-Order Regret in Reinforcement Learning with Linear Function Approximation: A Robust Estimation Approach Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, Kevin Jamieson
COLT 2022 Horizon-Free Reinforcement Learning in Polynomial Time: The Power of Stationary Policies Zihan Zhang, Xiangyang Ji, Simon Du
ICML 2022 Near-Optimal Algorithms for Autonomous Exploration and Multi-Goal Stochastic Shortest Path Haoyuan Cai, Tengyu Ma, Simon Du
ICML 2022 Nearly Optimal Policy Optimization with Stable at Any Time Guarantee Tianhao Wu, Yunchang Yang, Han Zhong, Liwei Wang, Simon Du, Jiantao Jiao
ICML 2022 Reward-Free RL Is No Harder than Reward-Aware RL in Linear Markov Decision Processes Andrew J Wagenmaker, Yifang Chen, Max Simchowitz, Simon Du, Kevin Jamieson
AISTATS 2021 Q-Learning with Logarithmic Regret Kunhe Yang, Lin Yang, Simon Du
ICML 2021 Bilinear Classes: A Structural Framework for Provable Generalization in RL Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, Ruosong Wang
COLT 2021 Fine-Grained Gap-Dependent Bounds for Tabular MDPs via Adaptive Multi-Step Bootstrap Haike Xu, Tengyu Ma, Simon Du
ICML 2021 Improved Corruption Robust Algorithms for Episodic Reinforcement Learning Yifang Chen, Simon Du, Kevin Jamieson
COLT 2021 Is Reinforcement Learning More Difficult than Bandits? a Near-Optimal Algorithm Escaping the Curse of Horizon Zihan Zhang, Xiangyang Ji, Simon Du
ICML 2021 Near Optimal Reward-Free Reinforcement Learning Zihan Zhang, Simon Du, Xiangyang Ji
ICML 2021 On Reinforcement Learning with Adversarial Corruption and Its Application to Block MDP Tianhao Wu, Yunchang Yang, Simon Du, Liwei Wang
ICML 2020 Provable Representation Learning for Imitation Learning via Bi-Level Optimization Sanjeev Arora, Simon Du, Sham Kakade, Yuping Luo, Nikunj Saunshi
ICML 2019 Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks Sanjeev Arora, Simon Du, Wei Hu, Zhiyuan Li, Ruosong Wang
ICML 2019 Gradient Descent Finds Global Minima of Deep Neural Networks Simon Du, Jason Lee, Haochuan Li, Liwei Wang, Xiyu Zhai
ICML 2019 Provably Efficient RL with Rich Observations via Latent State Decoding Simon Du, Akshay Krishnamurthy, Nan Jiang, Alekh Agarwal, Miroslav Dudik, John Langford
ICML 2019 Width Provably Matters in Optimization for Deep Linear Neural Networks Simon Du, Wei Hu
ICML 2018 Discrete-Continuous Mixtures in Probabilistic Programming: Generalized Semantics and Inference Algorithms Yi Wu, Siddharth Srivastava, Nicholas Hay, Simon Du, Stuart Russell
ICML 2018 Fast and Sample Efficient Inductive Matrix Completion via Multi-Phase Procrustes Flow Xiao Zhang, Simon Du, Quanquan Gu
ICML 2018 Gradient Descent Learns One-Hidden-Layer CNN: Don’t Be Afraid of Spurious Local Minima Simon Du, Jason Lee, Yuandong Tian, Aarti Singh, Barnabas Poczos
ICML 2018 On the Power of Over-Parametrization in Neural Networks with Quadratic Activation Simon Du, Jason Lee