Du, Xuefeng

26 publications

ICLRW 2025 How to Steer LLM Latents for Hallucination Detection? Seongheon Park, Xuefeng Du, Min-Hsuan Yeh, Haobo Wang, Yixuan Li
NeurIPS 2025 Limited Preference Data? Learning Better Reward Model with Latent Space Synthesis Leitian Tao, Xuefeng Du, Sharon Li
TMLR 2025 Out-of-Distribution Learning with Human Feedback Haoyue Bai, Xuefeng Du, Katie Rainey, Shibin Parameswaran, Yixuan Li
ICML 2025 Position: Challenges and Future Directions of Data-Centric AI Alignment Min-Hsuan Yeh, Jeffrey Wang, Xuefeng Du, Seongheon Park, Leitian Tao, Shawn Im, Yixuan Li
ICML 2025 Steer LLM Latents for Hallucination Detection Seongheon Park, Xuefeng Du, Min-Hsuan Yeh, Haobo Wang, Yixuan Li
ICML 2025 Understanding Multimodal LLMs Under Distribution Shifts: An Information-Theoretic Approach Changdae Oh, Zhen Fang, Shawn Im, Xuefeng Du, Yixuan Li
ICLRW 2025 Understanding Multimodal LLMs Under Distribution Shifts: An Information-Theoretic Approach Changdae Oh, Zhen Fang, Shawn Im, Xuefeng Du, Yixuan Li
NeurIPS 2024 HaloScope: Harnessing Unlabeled LLM Generations for Hallucination Detection Xuefeng Du, Chaowei Xiao, Yixuan Li
ICLR 2024 How Does Unlabeled Data Provably Help Out-of-Distribution Detection? Xuefeng Du, Zhen Fang, Ilias Diakonikolas, Yixuan Li
DMLR 2024 OpenOOD V1.5: Enhanced Benchmark for Out-of-Distribution Detection Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou Sun, Xuefeng Du, Yixuan Li, Ziwei Liu, Yiran Chen, Hai Li
NeurIPSW 2024 Safety-Aware Fine-Tuning of Large Language Models Hyeong Kyu Choi, Xuefeng Du, Yixuan Li
ICML 2024 When and How Does In-Distribution Label Help Out-of-Distribution Detection? Xuefeng Du, Yiyou Sun, Yixuan Li
NeurIPS 2023 Dream the Impossible: Outlier Imagination with Diffusion Models Xuefeng Du, Yiyou Sun, Xiaojin Zhu, Yixuan Li
ICML 2023 Feed Two Birds with One Scone: Exploiting Wild Data for Both Out-of-Distribution Generalization and Detection Haoyue Bai, Gregory Canal, Xuefeng Du, Jeongyeol Kwon, Robert D Nowak, Yixuan Li
TMLR 2023 Noise-Robust Graph Learning by Estimating and Leveraging Pairwise Interactions Xuefeng Du, Tian Bian, Yu Rong, Bo Han, Tongliang Liu, Tingyang Xu, Wenbing Huang, Yixuan Li, Junzhou Huang
ICLR 2023 Non-Parametric Outlier Synthesis Leitian Tao, Xuefeng Du, Jerry Zhu, Yixuan Li
NeurIPSW 2023 OpenOOD V1.5: Enhanced Benchmark for Out-of-Distribution Detection Jingyang Zhang, Jingkang Yang, Pengyun Wang, Haoqi Wang, Yueqian Lin, Haoran Zhang, Yiyou Sun, Xuefeng Du, Yixuan Li, Ziwei Liu, Yiran Chen, Hai Li
NeurIPS 2022 OpenOOD: Benchmarking Generalized Out-of-Distribution Detection Jingkang Yang, Pengyun Wang, Dejian Zou, Zitang Zhou, Kunyuan Ding, Wenxuan Peng, Haoqi Wang, Guangyao Chen, Bo Li, Yiyou Sun, Xuefeng Du, Kaiyang Zhou, Wayne Zhang, Dan Hendrycks, Yixuan Li, Ziwei Liu
CVPR 2022 Performance-Aware Mutual Knowledge Distillation for Improving Neural Architecture Search Pengtao Xie, Xuefeng Du
NeurIPS 2022 SIREN: Shaping Representations for Detecting Out-of-Distribution Objects Xuefeng Du, Gabriel Gozum, Yifei Ming, Yixuan Li
CVPR 2022 Unknown-Aware Object Detection: Learning What You Don't Know from Videos in the Wild Xuefeng Du, Xin Wang, Gabriel Gozum, Yixuan Li
ICLR 2022 VOS: Learning What You Don't Know by Virtual Outlier Synthesis Xuefeng Du, Zhaoning Wang, Mu Cai, Yixuan Li
AAAI 2021 How to Save Your Annotation Cost for Panoptic Segmentation? Xuefeng Du, Chenhan Jiang, Hang Xu, Gengwei Zhang, Zhenguo Li
ICML 2021 Learning Diverse-Structured Networks for Adversarial Robustness Xuefeng Du, Jingfeng Zhang, Bo Han, Tongliang Liu, Yu Rong, Gang Niu, Junzhou Huang, Masashi Sugiyama
NeurIPS 2020 Node Classification on Graphs with Few-Shot Novel Labels via Meta Transformed Network Embedding Lin Lan, Pinghui Wang, Xuefeng Du, Kaikai Song, Jing Tao, Xiaohong Guan
CVPRW 2019 Efficient Deep Palmprint Recognition via Distilled Hashing Coding Huikai Shao, Dexing Zhong, Xuefeng Du