ML Anthology
Authors
Search
About
Durand, Audrey
23 publications
AAAI
2025
On Shallow Planning Under Partial Observability
Randy Lefebvre
,
Audrey Durand
UAI
2024
Neural Active Learning Meets the Partial Monitoring Framework
Maxime Heuillet
,
Ola Ahmad
,
Audrey Durand
ICML
2024
Randomized Confidence Bounds for Stochastic Partial Monitoring
Maxime Heuillet
,
Ola Ahmad
,
Audrey Durand
ICMLW
2024
Randomized Confidence Bounds for Stochastic Partial Monitoring
Maxime Heuillet
,
Ola Ahmad
,
Audrey Durand
JMLR
2023
Erratum: Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
Louis-Philippe Vignault
,
Audrey Durand
,
Pascal Germain
AAAI
2023
Latent Space Evolution Under Incremental Learning with Concept Drift (Student Abstract)
Charles Bourbeau
,
Audrey Durand
AAAI
2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning
Mathieu Godbout
,
Maxime Heuillet
,
Sharath Chandra Raparthy
,
Rupali Bhati
,
Audrey Durand
AAAI
2022
Annotation Cost-Sensitive Deep Active Learning with Limited Data (Student Abstract)
Renaud Bernatchez
,
Audrey Durand
,
Flavie Lavoie-Cardinal
NeurIPSW
2022
Performative Prediction in Time Series: A Case Study
Rupali Bhati
,
Jennifer Jones
,
David Langelier
,
Anthony Reiman
,
Jonathan Greenland
,
Kristin Campbell
,
Audrey Durand
NeurIPSW
2022
Tracking the Risk of Machine Learning Systems with Partial Monitoring
Maxime Heuillet
,
Audrey Durand
ECML-PKDD
2021
Routine Bandits: Minimizing Regret on Recurring Problems
Hassan Saber
,
Léo Saci
,
Odalric-Ambrym Maillard
,
Audrey Durand
ICMLW
2021
Sequential Automated Machine Learning: Bandits-Driven Exploration Using a Collaborative Filtering Representation
Maxime Heuillet
,
Benoit Debaque
,
Audrey Durand
IJCAI
2020
Handling Black Swan Events in Deep Learning with Diversely Extrapolated Neural Networks
Maxime Wabartha
,
Audrey Durand
,
Vincent François-Lavet
,
Joelle Pineau
AAAI
2020
Literature Mining for Incorporating Inductive Bias in Biomedical Prediction Tasks (Student Abstract)
Qizhen Zhang
,
Audrey Durand
,
Joelle Pineau
AISTATS
2020
Old Dog Learns New Tricks: Randomized UCB for Bandit Problems
Sharan Vaswani
,
Abbas Mehrabian
,
Audrey Durand
,
Branislav Kveton
CoRL
2019
Leveraging Exploration in Off-Policy Algorithms via Normalizing Flows
Bogdan Mazoure
,
Thang Doan
,
Audrey Durand
,
Joelle Pineau
,
R Devon Hjelm
AAAI
2019
Leveraging Observations in Bandits: Between Risks and Benefits
Andrei Lupu
,
Audrey Durand
,
Doina Precup
AAAI
2019
On-Line Adaptative Curriculum Learning for GANs
Thang Doan
,
João Monteiro
,
Isabela Albuquerque
,
Bogdan Mazoure
,
Audrey Durand
,
Joelle Pineau
,
R. Devon Hjelm
MLHC
2018
Contextual Bandits for Adapting Treatment in a Mouse Model of De Novo Carcinogenesis
Audrey Durand
,
Charis Achilleos
,
Demetris Iacovides
,
Katerina Strati
,
Georgios D. Mitsis
,
Joelle Pineau
AAAI
2018
Learning to Become an Expert: Deep Networks Applied to Super-Resolution Microscopy
Louis-Émile Robitaille
,
Audrey Durand
,
Marc-André Gardner
,
Christian Gagné
,
Paul De Koninck
,
Flavie Lavoie-Cardinal
AAAI
2018
Rating Super-Resolution Microscopy Images with Deep Learning
Louis-Émile Robitaille
,
Audrey Durand
,
Marc-André Gardner
,
Christian Gagné
,
Paul De Koninck
,
Flavie Lavoie-Cardinal
JMLR
2018
Streaming Kernel Regression with Provably Adaptive Mean, Variance, and Regularization
Audrey Durand
,
Odalric-Ambrym Maillard
,
Joelle Pineau
NeurIPS
2018
Temporal Regularization for Markov Decision Process
Pierre Thodoroff
,
Audrey Durand
,
Joelle Pineau
,
Doina Precup