Elidan, Gal

39 publications

ICLR 2025 Do LLMs Have Consistent Values? Naama Rozen, Liat Bezalel, Gal Elidan, Amir Globerson, Ella Daniel
NeurIPS 2024 TACT: Advancing Complex Aggregative Reasoning with Information Extraction Tools Avi Caciularu, Alon Jacovi, Eyal Ben-David, Sasha Goldshtein, Tal Schuster, Jonathan Herzig, Gal Elidan, Amir Globerson
UAI 2022 Active Learning with Label Comparisons Gal Yona, Shay Moran, Gal Elidan, Amir Globerson
ICCV 2021 Explaining in Style: Training a GAN to Explain a Classifier in StyleSpace Oran Lang, Yossi Gandelsman, Michal Yarom, Yoav Wald, Gal Elidan, Avinatan Hassidim, William T. Freeman, Phillip Isola, Amir Globerson, Michal Irani, Inbar Mosseri
ICLR 2021 Net-DNF: Effective Deep Modeling of Tabular Data Liran Katzir, Gal Elidan, Ran El-Yaniv
NeurIPS 2019 Globally Optimal Learning for Structured Elliptical Losses Yoav Wald, Nofar Noy, Gal Elidan, Ami Wiesel
AISTATS 2019 Learning Rules-First Classifiers Deborah Cohen, Amit Daniely, Amir Globerson, Gal Elidan
IJCAI 2017 Logistic Markov Decision Processes Martin Mladenov, Craig Boutilier, Dale Schuurmans, Ofer Meshi, Gal Elidan, Tyler Lu
UAI 2017 Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence, UAI 2017, Sydney, Australia, August 11-15, 2017 Gal Elidan, Kristian Kersting, Alexander Ihler
AISTATS 2017 Scalable Learning of Non-Decomposable Objectives Elad Eban, Mariano Schain, Alan Mackey, Ariel Gordon, Ryan Rifkin, Gal Elidan
AISTATS 2016 Generalized Ideal Parent (GIP): Discovering Non-Gaussian Hidden Variables Yaniv Tenzer, Gal Elidan
AISTATS 2016 Improper Deep Kernels Uri Heinemann, Roi Livni, Elad Eban, Gal Elidan, Amir Globerson
UAI 2014 HELM: Highly Efficient Learning of Mixed Copula Networks Yaniv Tenzer, Gal Elidan
AISTATS 2013 Dynamic Copula Networks for Modeling Real-Valued Time Series Elad Eban, Gideon Rothschild, Adi Mizrahi, Israel Nelken, Gal Elidan
UAI 2013 Learning Max-Margin Tree Predictors Ofer Meshi, Elad Eban, Gal Elidan, Amir Globerson
UAI 2013 Speedy Model Selection (SMS) for Copula Models Yaniv Tenzer, Gal Elidan
AISTATS 2012 Copula Network Classifiers (CNCs) Gal Elidan
AISTATS 2012 Lightning-Speed Structure Learning of Nonlinear Continuous Networks Gal Elidan
NeurIPS 2012 Nonparanormal Belief Propagation (NPNBP) Gal Elidan, Cobi Cario
AISTATS 2011 Bagged Structure Learning of Bayesian Network Gal Elidan
NeurIPS 2010 Copula Bayesian Networks Gal Elidan
MLOSS 2010 FastInf: An Efficient Approximate Inference Library Ariel Jaimovich, Ofer Meshi, Ian McGraw, Gal Elidan
UAI 2010 Inference-Less Density Estimation Using Copula Bayesian Networks Gal Elidan
UAI 2008 Convex Point Estimation Using Undirected Bayesian Transfer Hierarchies Gal Elidan, Benjamin Packer, Geremy Heitz, Daphne Koller
JMLR 2008 Learning Bounded Treewidth Bayesian Networks Gal Elidan, Stephen Gould
NeurIPS 2008 Learning Bounded Treewidth Bayesian Networks Gal Elidan, Stephen Gould
JMLR 2008 Max-Margin Classification of Data with Absent Features Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller
NeurIPS 2008 Shape-Based Object Localization for Descriptive Classification Geremy Heitz, Gal Elidan, Benjamin Packer, Daphne Koller
JMLR 2007 "Ideal Parent” Structure Learning for Continuous Variable Bayesian Networks Gal Elidan, Iftach Nachman, Nir Friedman
CVPR 2006 Learning Object Shape: From Drawings to Images Gal Elidan, Geremy Heitz, Daphne Koller
NeurIPS 2006 Max-Margin Classification of Incomplete Data Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel, Daphne Koller
UAI 2006 Residual Belief Propagation: Informed Scheduling for Asynchronous Message Passing Gal Elidan, Ian McGraw, Daphne Koller
NeurIPS 2006 Using Combinatorial Optimization Within Max-Product Belief Propagation Daniel Tarlow, Gal Elidan, Daphne Koller, John C. Duchi
JMLR 2005 Learning Hidden Variable Networks: The Information Bottleneck Approach Gal Elidan, Nir Friedman
UAI 2004 "Ideal Parent" Structure Learning for Continuous Variable Networks Iftach Nachman, Gal Elidan, Nir Friedman
UAI 2003 The Information Bottleneck EM Algorithm Gal Elidan, Nir Friedman
AAAI 2002 Data Perturbation for Escaping Local Maxima in Learning Gal Elidan, Matan Ninio, Nir Friedman, Dale Schuurmans
UAI 2001 Learning the Dimensionality of Hidden Variables Gal Elidan, Nir Friedman
NeurIPS 2000 Discovering Hidden Variables: A Structure-Based Approach Gal Elidan, Noam Lotner, Nir Friedman, Daphne Koller