Evans, David

18 publications

TMLR 2025 Pitfalls in Evaluating Inference-Time Methods for Improving LLM Reliability Michael M. Jerge, David Evans
TMLR 2024 Do Parameters Reveal More than Loss for Membership Inference? Anshuman Suri, Xiao Zhang, David Evans
ICMLW 2024 Do Parameters Reveal More than Loss for Membership Inference? Anshuman Suri, Xiao Zhang, David Evans
UAI 2023 Efficient Privacy-Preserving Stochastic Nonconvex Optimization Lingxiao Wang, Bargav Jayaraman, David Evans, Quanquan Gu
NeurIPS 2023 GlucoSynth: Generating Differentially-Private Synthetic Glucose Traces Josephine Lamp, Mark Derdzinski, Christopher Hannemann, Joost van der Linden, Lu Feng, Tianhao Wang, David Evans
CVPR 2023 Manipulating Transfer Learning for Property Inference Yulong Tian, Fnu Suya, Anshuman Suri, Fengyuan Xu, David Evans
NeurIPS 2023 What Distributions Are Robust to Indiscriminate Poisoning Attacks for Linear Learners? Fnu Suya, Xiao Zhang, Yuan Tian, David Evans
ICMLW 2023 When Can Linear Learners Be Robust to Indiscriminate Poisoning Attacks? Fnu Suya, Xiao Zhang, Yuan Tian, David Evans
ICMLW 2022 Memorization in NLP Fine-Tuning Methods Fatemehsadat Mireshghallah, Archit Uniyal, Tianhao Wang, David Evans, Taylor Berg-Kirkpatrick
ICLR 2022 Understanding Intrinsic Robustness Using Label Uncertainty Xiao Zhang, David Evans
FnTML 2021 Advances and Open Problems in Federated Learning Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D'Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, Sen Zhao
ICLR 2021 Improved Estimation of Concentration Under $\ell_p$-Norm Distance Metrics Using Half Spaces Jack Prescott, Xiao Zhang, David Evans
ICML 2021 Model-Targeted Poisoning Attacks with Provable Convergence Fnu Suya, Saeed Mahloujifar, Anshuman Suri, David Evans, Yuan Tian
ICML 2020 Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization Sicheng Zhu, Xiao Zhang, David Evans
AISTATS 2020 Understanding the Intrinsic Robustness of Image Distributions Using Conditional Generative Models Xiao Zhang, Jinghui Chen, Quanquan Gu, David Evans
ICLR 2019 Cost-Sensitive Robustness Against Adversarial Examples Xiao Zhang, David Evans
NeurIPS 2019 Empirically Measuring Concentration: Fundamental Limits on Intrinsic Robustness Saeed Mahloujifar, Xiao Zhang, Mohammad Mahmoody, David Evans
NeurIPS 2018 Distributed Learning Without Distress: Privacy-Preserving Empirical Risk Minimization Bargav Jayaraman, Lingxiao Wang, David Evans, Quanquan Gu