ML Anthology
Authors
Search
About
Farahmand, Amir-massoud
39 publications
ICLR
2025
A Truncated Newton Method for Optimal Transport
Mete Kemertas
,
Amir-massoud Farahmand
,
Allan Douglas Jepson
ICML
2025
Calibrated Value-Aware Model Learning with Probabilistic Environment Models
Claas A Voelcker
,
Anastasiia Pedan
,
Arash Ahmadian
,
Romina Abachi
,
Igor Gilitschenski
,
Amir-Massoud Farahmand
ICML
2025
Categorical Distributional Reinforcement Learning with Kullback-Leibler Divergence: Convergence and Asymptotics
Tyler Kastner
,
Mark Rowland
,
Yunhao Tang
,
Murat A Erdogdu
,
Amir-Massoud Farahmand
TMLR
2025
Deflated Dynamics Value Iteration
Jongmin Lee
,
Amin Rakhsha
,
Ernest K. Ryu
,
Amir-massoud Farahmand
TMLR
2025
Efficient and Accurate Optimal Transport with Mirror Descent and Conjugate Gradients
Mete Kemertas
,
Allan Douglas Jepson
,
Amir-massoud Farahmand
ICLR
2025
MAD-TD: Model-Augmented Data Stabilizes High Update Ratio RL
Claas A Voelcker
,
Marcel Hussing
,
Eric Eaton
,
Amir-massoud Farahmand
,
Igor Gilitschenski
NeurIPS
2025
Majority of the Bests: Improving Best-of-N via Bootstrapping
Amin Rakhsha
,
Kanika Madan
,
Tianyu Zhang
,
Amir-massoud Farahmand
,
Amir Khasahmadi
ICML
2025
PANDAS: Improving Many-Shot Jailbreaking via Positive Affirmation, Negative Demonstration, and Adaptive Sampling
Avery Ma
,
Yangchen Pan
,
Amir-Massoud Farahmand
ECCV
2024
Improving Adversarial Transferability via Model Alignment
Avery Ma
,
Amir-massoud Farahmand
,
Yangchen Pan
,
Philip Torr
,
Jindong Gu
ICLR
2024
Maximum Entropy Model Correction in Reinforcement Learning
Amin Rakhsha
,
Mete Kemertas
,
Mohammad Ghavamzadeh
,
Amir-massoud Farahmand
NeurIPS
2023
Distributional Model Equivalence for Risk-Sensitive Reinforcement Learning
Tyler Kastner
,
Murat A Erdogdu
,
Amir-massoud Farahmand
TMLR
2023
Understanding the Robustness Difference Between Stochastic Gradient Descent and Adaptive Gradient Methods
Avery Ma
,
Yangchen Pan
,
Amir-massoud Farahmand
ICLR
2022
Learning Object-Oriented Dynamics for Planning from Text
Guiliang Liu
,
Ashutosh Adhikari
,
Amir-massoud Farahmand
,
Pascal Poupart
NeurIPS
2022
Operator Splitting Value Iteration
Amin Rakhsha
,
Andrew Wang
,
Mohammad Ghavamzadeh
,
Amir-massoud Farahmand
UAI
2022
Understanding and Mitigating the Limitations of Prioritized Experience Replay
Yangchen Pan
,
Jincheng Mei
,
Amir-massoud Farahmand
,
Martha White
,
Hengshuai Yao
,
Mohsen Rohani
,
Jun Luo
ICMLW
2022
VIPer: Iterative Value-Aware Model Learning on the Value Improvement Path
Romina Abachi
,
Claas A Voelcker
,
Animesh Garg
,
Amir-massoud Farahmand
ICLR
2022
Value Gradient Weighted Model-Based Reinforcement Learning
Claas A Voelcker
,
Victor Liao
,
Animesh Garg
,
Amir-massoud Farahmand
NeurIPSW
2021
Deep Reinforcement Learning for Online Control of Stochastic Partial Differential Equations
Erfan Pirmorad
,
Faraz Khoshbakhtian
,
Farnam Mansouri
,
Amir-massoud Farahmand
ICML
2021
PID Accelerated Value Iteration Algorithm
Amir-Massoud Farahmand
,
Mohammad Ghavamzadeh
ICLR
2020
An Implicit Function Learning Approach for Parametric Modal Regression
Yangchen Pan
,
Ehsan Imani
,
Martha White
,
Amir-massoud Farahmand
NeurIPS
2020
An Implicit Function Learning Approach for Parametric Modal Regression
Yangchen Pan
,
Ehsan Imani
,
Amir-massoud Farahmand
,
Martha White
ICLR
2020
Frequency-Based Search-Control in Dyna
Yangchen Pan
,
Jincheng Mei
,
Amir-massoud Farahmand
ICLR
2019
Dimensionality Reduction for Representing the Knowledge of Probabilistic Models
Marc T Law
,
Jake Snell
,
Amir-massoud Farahmand
,
Raquel Urtasun
,
Richard S Zemel
IJCAI
2019
Hill Climbing on Value Estimates for Search-Control in Dyna
Yangchen Pan
,
Hengshuai Yao
,
Amir-massoud Farahmand
,
Martha White
NeurIPS
2019
Value Function in Frequency Domain and the Characteristic Value Iteration Algorithm
Amir-massoud Farahmand
NeurIPS
2018
Iterative Value-Aware Model Learning
Amir-massoud Farahmand
ICML
2018
Reinforcement Learning with Function-Valued Action Spaces for Partial Differential Equation Control
Yangchen Pan
,
Amir-massoud Farahmand
,
Martha White
,
Saleh Nabi
,
Piyush Grover
,
Daniel Nikovski
NeurIPS
2017
Random Projection Filter Bank for Time Series Data
Amir-massoud Farahmand
,
Sepideh Pourazarm
,
Daniel Nikovski
AISTATS
2017
Value-Aware Loss Function for Model-Based Reinforcement Learning
Amir Massoud Farahmand
,
André Barreto
,
Daniel Nikovski
JMLR
2016
Regularized Policy Iteration with Nonparametric Function Spaces
Amir-massoud Farahmand
,
Mohammad Ghavamzadeh
,
Csaba Szepesvári
,
Shie Mannor
AAAI
2016
Truncated Approximate Dynamic Programming with Task-Dependent Terminal Value
Amir-massoud Farahmand
,
Daniel Nikolaev Nikovski
,
Yuji Igarashi
,
Hiroki Konaka
AAAI
2015
Approximate MaxEnt Inverse Optimal Control and Its Application for Mental Simulation of Human Interactions
De-An Huang
,
Amir-massoud Farahmand
,
Kris M. Kitani
,
James Andrew Bagnell
ICML
2014
Sample-Based Approximate Regularization
Philip Bachman
,
Amir-Massoud Farahmand
,
Doina Precup
NeurIPS
2013
Bellman Error Based Feature Generation Using Random Projections on Sparse Spaces
Mahdi Milani Fard
,
Yuri Grinberg
,
Amir-massoud Farahmand
,
Joelle Pineau
,
Doina Precup
NeurIPS
2013
Learning from Limited Demonstrations
Beomjoon Kim
,
Amir-massoud Farahmand
,
Joelle Pineau
,
Doina Precup
NeurIPS
2011
Action-Gap Phenomenon in Reinforcement Learning
Amir-massoud Farahmand
MLJ
2011
Model Selection in Reinforcement Learning
Amir Massoud Farahmand
,
Csaba Szepesvári
NeurIPS
2010
Error Propagation for Approximate Policy and Value Iteration
Amir-massoud Farahmand
,
Csaba Szepesvári
,
Rémi Munos
ICML
2007
Manifold-Adaptive Dimension Estimation
Amir Massoud Farahmand
,
Csaba Szepesvári
,
Jean-Yves Audibert