Feizi, Soheil

93 publications

NeurIPS 2025 A Technical Report on “Erasing the Invisible”: The 2024 NeurIPS Competition on Stress Testing Image Watermarks Mucong Ding, Bang An, Tahseen Rabbani, Chenghao Deng, Anirudh Satheesh, Souradip Chakraborty, Mehrdad Saberi, Yuxin Wen, Kyle Rui Sang, Aakriti Agrawal, Xuandong Zhao, Mo Zhou, Mary-Anne Hartley, Lei Li, Yu-Xiang Wang, Vishal M. Patel, Soheil Feizi, Tom Goldstein, Furong Huang
NeurIPS 2025 Adversarial Paraphrasing: A Universal Attack for Humanizing AI-Generated Text Yize Cheng, Vinu Sankar Sadasivan, Mehrdad Saberi, Shoumik Saha, Soheil Feizi
TMLR 2025 Can AI-Generated Text Be Reliably Detected? Stress Testing AI Text Detectors Under Various Attacks Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, Soheil Feizi
ICLR 2025 How Learnable Grids Recover Fine Detail in Low Dimensions: A Neural Tangent Kernel Analysis of Multigrid Parametric Encodings Samuel Audia, Soheil Feizi, Matthias Zwicker, Dinesh Manocha
ICLRW 2025 IConMark: Robust Interpretable Concept-Based Watermark for AI Images Vinu Sankar Sadasivan, Mehrdad Saberi, Soheil Feizi
NeurIPS 2025 Localizing Knowledge in Diffusion Transformers Arman Zarei, Samyadeep Basu, Keivan Rezaei, Zihao Lin, Sayan Nag, Soheil Feizi
TMLR 2025 RESTOR: Knowledge Recovery in Machine Unlearning Keivan Rezaei, Khyathi Chandu, Soheil Feizi, Yejin Choi, Faeze Brahman, Abhilasha Ravichander
ICLR 2025 Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models Mazda Moayeri, Sriram Balasubramanian, Samyadeep Basu, Priyatham Kattakinda, Atoosa Chegini, Robert Brauneis, Soheil Feizi
ICLRW 2025 SpurLens: Finding Spurious Correlations in Multimodal LLMs Parsa Hosseini, Sumit Nawathe, Mazda Moayeri, Sriram Balasubramanian, Soheil Feizi
CVPRW 2025 Understanding the Effect of Using Semantically Meaningful Tokens for Visual Representation Learning Neha Mukund Kalibhat, Priyatham Kattakinda, Sumit Nawathe, Arman Zarei, Nikita Seleznev, Samuel Sharpe, Senthil Kumar, Soheil Feizi
ICLR 2025 Unearthing Skill-Level Insights for Understanding Trade-Offs of Foundation Models Mazda Moayeri, Vidhisha Balachandran, Varun Chandrasekaran, Safoora Yousefi, Thomas Fel, Soheil Feizi, Besmira Nushi, Neel Joshi, Vibhav Vineet
ICLR 2024 DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness Shoumik Saha, Wenxiao Wang, Yigitcan Kaya, Soheil Feizi, Tudor Dumitras
WACV 2024 Data-Centric Debugging: Mitigating Model Failures via Targeted Image Retrieval Sahil Singla, Atoosa Malemir Chegini, Mazda Moayeri, Soheil Feizi
NeurIPS 2024 Decomposing and Interpreting Image Representations via Text in ViTs Beyond CLIP Sriram Balasubramanian, Samyadeep Basu, Soheil Feizi
ICMLW 2024 Decomposing and Interpreting Image Representations via Text in ViTs Beyond CLIP Sriram Balasubramanian, Samyadeep Basu, Soheil Feizi
ICML 2024 Fast Adversarial Attacks on Language Models in One GPU Minute Vinu Sankar Sadasivan, Shoumik Saha, Gaurang Sriramanan, Priyatham Kattakinda, Atoosa Chegini, Soheil Feizi
NeurIPS 2024 LLM-Check: Investigating Detection of Hallucinations in Large Language Models Gaurang Sriramanan, Siddhant Bharti, Vinu Sankar Sadasivan, Shoumik Saha, Priyatham Kattakinda, Soheil Feizi
ICLR 2024 Localizing and Editing Knowledge in Text-to-Image Generative Models Samyadeep Basu, Nanxuan Zhao, Vlad I Morariu, Soheil Feizi, Varun Manjunatha
NeurIPS 2024 Loki: Low-Rank Keys for Efficient Sparse Attention Prajwal Singhania, Siddharth Singh, Shwai He, Soheil Feizi, Abhinav Bhatele
AAAI 2024 Measuring Self-Supervised Representation Quality for Downstream Classification Using Discriminative Features Neha Mukund Kalibhat, Kanika Narang, Hamed Firooz, Maziar Sanjabi, Soheil Feizi
ICML 2024 On Mechanistic Knowledge Localization in Text-to-Image Generative Models Samyadeep Basu, Keivan Rezaei, Priyatham Kattakinda, Vlad I Morariu, Nanxuan Zhao, Ryan A. Rossi, Varun Manjunatha, Soheil Feizi
ICLR 2024 PRIME: Prioritizing Interpretability in Failure Mode Extraction Keivan Rezaei, Mehrdad Saberi, Mazda Moayeri, Soheil Feizi
NeurIPSW 2024 Rethinking Artistic Copyright Infringements in the Era of Text-to-Image Generative Models Mazda Moayeri, Samyadeep Basu, Sriram Balasubramanian, Priyatham Kattakinda, Atoosa Chegini, Robert Brauneis, Soheil Feizi
ICLR 2024 Robustness of AI-Image Detectors: Fundamental Limits and Practical Attacks Mehrdad Saberi, Vinu Sankar Sadasivan, Keivan Rezaei, Aounon Kumar, Atoosa Chegini, Wenxiao Wang, Soheil Feizi
AAAI 2024 Strong Baselines for Parameter-Efficient Few-Shot Fine-Tuning Samyadeep Basu, Shell Xu Hu, Daniela Massiceti, Soheil Feizi
NeurIPS 2024 Understanding Information Storage and Transfer in Multi-Modal Large Language Models Samyadeep Basu, Martin Grayson, Cecily Morrison, Besmira Nushi, Soheil Feizi, Daniela Massiceti
NeurIPSW 2024 What Do We Learn from Inverting CLIP Models? Hamid Kazemi, Atoosa Chegini, Jonas Geiping, Soheil Feizi, Tom Goldstein
ICLRW 2024 WorldBench: Quantifying Geographic Disparities in LLM Factual Recall Mazda Moayeri, Soheil Feizi
CVPR 2023 CUDA: Convolution-Based Unlearnable Datasets Vinu Sankar Sadasivan, Mahdi Soltanolkotabi, Soheil Feizi
ICLR 2023 Certifiably Robust Policy Learning Against Adversarial Multi-Agent Communication Yanchao Sun, Ruijie Zheng, Parisa Hassanzadeh, Yongyuan Liang, Soheil Feizi, Sumitra Ganesh, Furong Huang
NeurIPS 2023 Diffused Redundancy in Pre-Trained Representations Vedant Nanda, Till Speicher, John Dickerson, Krishna Gummadi, Soheil Feizi, Adrian Weller
NeurIPS 2023 Exploring Geometry of Blind Spots in Vision Models Sriram Balasubramanian, Gaurang Sriramanan, Vinu Sankar Sadasivan, Soheil Feizi
AAAI 2023 Goal-Conditioned Q-Learning as Knowledge Distillation Alexander Levine, Soheil Feizi
ICLR 2023 Hard-Meta-Dataset++: Towards Understanding Few-Shot Performance on Difficult Tasks Samyadeep Basu, Megan Stanley, John F Bronskill, Soheil Feizi, Daniela Massiceti
ICML 2023 Identifying Interpretable Subspaces in Image Representations Neha Kalibhat, Shweta Bhardwaj, C. Bayan Bruss, Hamed Firooz, Maziar Sanjabi, Soheil Feizi
TMLR 2023 Interpretable Mixture of Experts Aya Abdelsalam Ismail, Sercan O Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, Tomas Pfister
ICLR 2023 Provable Robustness Against Wasserstein Distribution Shifts via Input Randomization Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi
ICML 2023 Run-Off Election: Improved Provable Defense Against Data Poisoning Attacks Keivan Rezaei, Kiarash Banihashem, Atoosa Chegini, Soheil Feizi
NeurIPS 2023 Spuriosity Rankings: Sorting Data to Measure and Mitigate Biases Mazda Moayeri, Wenxiao Wang, Sahil Singla, Soheil Feizi
NeurIPS 2023 Temporal Robustness Against Data Poisoning Wenxiao Wang, Soheil Feizi
ICML 2023 Text-to-Concept (and Back) via Cross-Model Alignment Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, Soheil Feizi
CVPRW 2023 Text2Concept: Concept Activation Vectors Directly from Text Mazda Moayeri, Keivan Rezaei, Maziar Sanjabi, Soheil Feizi
ICCV 2023 Towards Improved Input Masking for Convolutional Neural Networks Sriram Balasubramanian, Soheil Feizi
AISTATS 2022 Provable Adversarial Robustness for Fractional Lp Threat Models Alexander J. Levine, Soheil Feizi
CVPR 2022 A Comprehensive Study of Image Classification Model Sensitivity to Foregrounds, Backgrounds, and Visual Attributes Mazda Moayeri, Phillip Pope, Yogesh Balaji, Soheil Feizi
NeurIPS 2022 Explicit Tradeoffs Between Adversarial and Natural Distributional Robustness Mazda Moayeri, Kiarash Banihashem, Soheil Feizi
ICML 2022 FOCUS: Familiar Objects in Common and Uncommon Settings Priyatham Kattakinda, Soheil Feizi
NeurIPS 2022 Hard ImageNet: Segmentations for Objects with Strong Spurious Cues Mazda Moayeri, Sahil Singla, Soheil Feizi
ICML 2022 Improved Certified Defenses Against Data Poisoning with (Deterministic) Finite Aggregation Wenxiao Wang, Alexander J Levine, Soheil Feizi
ICLR 2022 Improved Deterministic L2 Robustness on CIFAR-10 and CIFAR-100 Sahil Singla, Surbhi Singla, Soheil Feizi
NeurIPS 2022 Improved Techniques for Deterministic L2 Robustness Sahil Singla, Soheil Feizi
NeurIPS 2022 Lethal Dose Conjecture on Data Poisoning Wenxiao Wang, Alexander Levine, Soheil Feizi
ICLR 2022 Policy Smoothing for Provably Robust Reinforcement Learning Aounon Kumar, Alexander Levine, Soheil Feizi
ICLR 2022 Salient ImageNet: How to Discover Spurious Features in Deep Learning? Sahil Singla, Soheil Feizi
CVPR 2022 Segment and Complete: Defending Object Detectors Against Adversarial Patch Attacks with Robust Patch Detection Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chellappa, Soheil Feizi
NeurIPS 2022 Toward Efficient Robust Training Against Union of $\ell_p$ Threat Models Gaurang Sriramanan, Maharshi Gor, Soheil Feizi
ICMLW 2022 Towards Better Understanding of Self-Supervised Representations Neha Mukund Kalibhat, Kanika Narang, Hamed Firooz, Maziar Sanjabi, Soheil Feizi
AISTATS 2021 GANs with Conditional Independence Graphs: On Subadditivity of Probability Divergences Mucong Ding, Constantinos Daskalakis, Soheil Feizi
ICLR 2021 Deep Partition Aggregation: Provable Defenses Against General Poisoning Attacks Alexander Levine, Soheil Feizi
ICLR 2021 Fantastic Four: Differentiable and Efficient Bounds on Singular Values of Convolution Layers Sahil Singla, Soheil Feizi
ICML 2021 Improved, Deterministic Smoothing for L_1 Certified Robustness Alexander J Levine, Soheil Feizi
NeurIPS 2021 Improving Deep Learning Interpretability by Saliency Guided Training Aya Abdelsalam Ismail, Hector Corrada Bravo, Soheil Feizi
ICLR 2021 Influence Functions in Deep Learning Are Fragile Samyadeep Basu, Phil Pope, Soheil Feizi
ICCV 2021 Low Curvature Activations Reduce Overfitting in Adversarial Training Vasu Singla, Sahil Singla, Soheil Feizi, David Jacobs
ICLR 2021 Perceptual Adversarial Robustness: Defense Against Unseen Threat Models Cassidy Laidlaw, Sahil Singla, Soheil Feizi
ICCV 2021 Sample Efficient Detection and Classification of Adversarial Attacks via Self-Supervised Embeddings Mazda Moayeri, Soheil Feizi
ICML 2021 Skew Orthogonal Convolutions Sahil Singla, Soheil Feizi
ICLR 2021 Understanding Over-Parameterization in Generative Adversarial Networks Yogesh Balaji, Mohammadmahdi Sajedi, Neha Mukund Kalibhat, Mucong Ding, Dominik Stöger, Mahdi Soltanolkotabi, Soheil Feizi
UAI 2021 Unsupervised Anomaly Detection with Adversarial Mirrored Autoencoders Gowthami Somepalli, Yexin Wu, Yogesh Balaji, Bhanukiran Vinzamuri, Soheil Feizi
AAAI 2021 Winning Lottery Tickets in Deep Generative Models Neha Mukund Kalibhat, Yogesh Balaji, Soheil Feizi
NeurIPS 2020 (De)Randomized Smoothing for Certifiable Defense Against Patch Attacks Alexander Levine, Soheil Feizi
AISTATS 2020 Adversarial Robustness of Flow-Based Generative Models Phillip Pope, Yogesh Balaji, Soheil Feizi
AAAI 2020 Adversarially Robust Distillation Micah Goldblum, Liam Fowl, Soheil Feizi, Tom Goldstein
NeurIPS 2020 Benchmarking Deep Learning Interpretability in Time Series Predictions Aya Abdelsalam Ismail, Mohamed Gunady, Hector Corrada Bravo, Soheil Feizi
NeurIPS 2020 Certifying Confidence via Randomized Smoothing Aounon Kumar, Alexander Levine, Soheil Feizi, Tom Goldstein
ICML 2020 Curse of Dimensionality on Randomized Smoothing for Certifiable Robustness Aounon Kumar, Alexander Levine, Tom Goldstein, Soheil Feizi
ECCVW 2020 Deep k-NN Defense Against Clean-Label Data Poisoning Attacks Neehar Peri, Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, John P. Dickerson
NeurIPS 2020 Dual Manifold Adversarial Robustness: Defense Against Lp and Non-Lp Adversarial Attacks Wei-An Lin, Chun Pong Lau, Alexander Levine, Rama Chellappa, Soheil Feizi
AAAI 2020 Maximum Likelihood Embedding of Logistic Random Dot Product Graphs Luke J. O'Connor, Muriel Médard, Soheil Feizi
ICML 2020 On Second-Order Group Influence Functions for Black-Box Predictions Samyadeep Basu, Xuchen You, Soheil Feizi
NeurIPS 2020 Robust Optimal Transport with Applications in Generative Modeling and Domain Adaptation Yogesh Balaji, Rama Chellappa, Soheil Feizi
AAAI 2020 Robustness Certificates for Sparse Adversarial Attacks by Randomized Ablation Alexander Levine, Soheil Feizi
ICML 2020 Second-Order Provable Defenses Against Adversarial Attacks Sahil Singla, Soheil Feizi
AISTATS 2020 Wasserstein Smoothing: Certified Robustness Against Wasserstein Adversarial Attacks Alexander Levine, Soheil Feizi
ICLR 2019 Are Adversarial Examples Inevitable? Ali Shafahi, W. Ronny Huang, Christoph Studer, Soheil Feizi, Tom Goldstein
ICML 2019 Entropic GANs Meet VAEs: A Statistical Approach to Compute Sample Likelihoods in GANs Yogesh Balaji, Hamed Hassani, Rama Chellappa, Soheil Feizi
NeurIPS 2019 Functional Adversarial Attacks Cassidy Laidlaw, Soheil Feizi
NeurIPS 2019 Input-Cell Attention Reduces Vanishing Saliency of Recurrent Neural Networks Aya Abdelsalam Ismail, Mohamed Gunady, Luiz Pessoa, Hector Corrada Bravo, Soheil Feizi
NeurIPS 2019 Quantum Wasserstein Generative Adversarial Networks Shouvanik Chakrabarti, Huang Yiming, Tongyang Li, Soheil Feizi, Xiaodi Wu
ICML 2019 Understanding Impacts of High-Order Loss Approximations and Features in Deep Learning Interpretation Sahil Singla, Eric Wallace, Shi Feng, Soheil Feizi
NeurIPS 2018 Porcupine Neural Networks: Approximating Neural Network Landscapes Soheil Feizi, Hamid Javadi, Jesse Zhang, David Tse
NeurIPS 2017 Tensor Biclustering Soheil Feizi, Hamid Javadi, David Tse
NeurIPS 2014 Biclustering Using Message Passing Luke O'Connor, Soheil Feizi