Feng, Lu

13 publications

UAI 2025 Adaptive Reward Design for Reinforcement Learning Minjae Kwon, Ingy ElSayed-Aly, Lu Feng
IJCAI 2025 Counterfactual Explanations for Continuous Action Reinforcement Learning Shuyang Dong, Shangtong Zhang, Lu Feng
AAAI 2025 Quantitative Predictive Monitoring and Control for Safe Human-Machine Interaction Shuyang Dong, Meiyi Ma, Josephine Lamp, Sebastian G. Elbaum, Matthew B. Dwyer, Lu Feng
AAAI 2025 Towards Computational Foreseeability Sarit Kraus, Kayla Boggess, Robert Kim, Bryan H. Choi, Lu Feng
AAAI 2024 ACAMDA: Improving Data Efficiency in Reinforcement Learning Through Guided Counterfactual Data Augmentation Yuewen Sun, Erli Wang, Biwei Huang, Chaochao Lu, Lu Feng, Changyin Sun, Kun Zhang
IJCAI 2024 ADESSE: Advice Explanations in Complex Repeated Decision-Making Environments Sören Schleibaum, Lu Feng, Sarit Kraus, Jörg P. Müller
IJCAI 2023 Explainable Multi-Agent Reinforcement Learning for Temporal Queries Kayla Boggess, Sarit Kraus, Lu Feng
NeurIPS 2023 GlucoSynth: Generating Differentially-Private Synthetic Glucose Traces Josephine Lamp, Mark Derdzinski, Christopher Hannemann, Joost van der Linden, Lu Feng, Tianhao Wang, David Evans
IJCAI 2022 Toward Policy Explanations for Multi-Agent Reinforcement Learning Kayla Boggess, Sarit Kraus, Lu Feng
ICCV 2021 MEDIRL: Predicting the Visual Attention of Drivers via Maximum Entropy Deep Inverse Reinforcement Learning Sonia Baee, Erfan Pakdamanian, Inki Kim, Lu Feng, Vicente Ordonez, Laura Barnes
NeurIPS 2020 STLnet: Signal Temporal Logic Enforced Multivariate Recurrent Neural Networks Meiyi Ma, Ji Gao, Lu Feng, John Stankovic
IJCAI 2018 Mixed Causal Structure Discovery with Application to Prescriptive Pricing Wenjuan Wei, Lu Feng, Chunchen Liu
ICML 2015 Scalable Model Selection for Large-Scale Factorial Relational Models Chunchen Liu, Lu Feng, Ryohei Fujimaki, Yusuke Muraoka