ML Anthology
Authors
Search
About
Foster, Dean P.
28 publications
ALT
2023
Linear Reinforcement Learning with Ball Structure Action Space
Zeyu Jia
,
Randy Jia
,
Dhruv Madeka
,
Dean P. Foster
NeurIPS
2022
A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation
Philip Amortila
,
Nan Jiang
,
Dhruv Madeka
,
Dean P. Foster
NeurIPS
2021
The Benefits of Implicit Regularization from SGD in Least Squares Problems
Difan Zou
,
Jingfeng Wu
,
Vladimir Braverman
,
Quanquan Gu
,
Dean P. Foster
,
Sham Kakade
NeurIPS
2019
Dynamic Local Regret for Non-Convex Online Forecasting
Sergul Aydore
,
Tianhao Zhu
,
Dean P. Foster
COLT
2016
Online Sparse Linear Regression
Dean P. Foster
,
Satyen Kale
,
Howard J. Karloff
JMLR
2015
Eigenwords: Spectral Word Embeddings
Paramveer S. Dhillon
,
Dean P. Foster
,
Lyle H. Ungar
COLT
2015
Variable Selection Is Hard
Dean P. Foster
,
Howard J. Karloff
,
Justin Thaler
AISTATS
2014
A Level-Set Hit-and-Run Sampler for Quasi-Concave Distributions
Shane T. Jensen
,
Dean P. Foster
UAI
2014
Adaptive Monotone Shrinkage for Regression
Zhuang Ma
,
Dean P. Foster
,
Robert A. Stine
UAI
2014
Fast Ridge Regression with Randomized Principal Component Analysis and Gradient Descent
Yichao Lu
,
Dean P. Foster
NeurIPS
2014
Large Scale Canonical Correlation Analysis with Iterative Least Squares
Yichao Lu
,
Dean P. Foster
JMLR
2014
Spectral Learning of Latent-Variable PCFGs: Algorithms and Sample Complexity
Shay B. Cohen
,
Karl Stratos
,
Michael Collins
,
Dean P. Foster
,
Lyle Ungar
JMLR
2013
A Risk Comparison of Ordinary Least Squares vs Ridge Regression
Paramveer S. Dhillon
,
Dean P. Foster
,
Sham M. Kakade
,
Lyle H. Ungar
NeurIPS
2013
Faster Ridge Regression via the Subsampled Randomized Hadamard Transform
Yichao Lu
,
Paramveer Dhillon
,
Dean P. Foster
,
Lyle Ungar
NeurIPS
2013
New Subsampling Algorithms for Fast Least Squares Regression
Paramveer Dhillon
,
Yichao Lu
,
Dean P. Foster
,
Lyle Ungar
NeurIPS
2013
One-Shot Learning and Big Data with N=2
Lee H Dicker
,
Dean P. Foster
NeurIPS
2012
A Spectral Algorithm for Latent Dirichlet Allocation
Anima Anandkumar
,
Dean P. Foster
,
Daniel J. Hsu
,
Sham M. Kakade
,
Yi-kai Liu
ICML
2012
Using CCA to Improve CCA: A New Spectral Method for Estimating Vector Models of Words
Paramveer S. Dhillon
,
Jordan Rodu
,
Dean P. Foster
,
Lyle H. Ungar
COLT
2011
Complexity-Based Approach to Calibration with Checking Rules
Dean P. Foster
,
Alexander Rakhlin
,
Karthik Sridharan
,
Ambuj Tewari
NeurIPS
2011
Multi-View Learning of Word Embeddings via CCA
Paramveer Dhillon
,
Dean P. Foster
,
Lyle H. Ungar
NeurIPS
2011
Stochastic Convex Optimization with Bandit Feedback
Alekh Agarwal
,
Dean P. Foster
,
Daniel J. Hsu
,
Sham M. Kakade
,
Alexander Rakhlin
ECML-PKDD
2009
Multi-Task Feature Selection Using the Multiple Inclusion Criterion (MIC)
Paramveer S. Dhillon
,
Brian Tomasik
,
Dean P. Foster
,
Lyle H. Ungar
COLT
2007
Multi-View Regression via Canonical Correlation Analysis
Sham M. Kakade
,
Dean P. Foster
JMLR
2006
Streamwise Feature Selection
Jing Zhou
,
Dean P. Foster
,
Robert A. Stine
,
Lyle H. Ungar
AISTATS
2005
Streaming Feature Selection Using IIC
Lyle H. Ungar
,
Jing Zhou
,
Dean P. Foster
,
Bob A. Stine
NeurIPS
2005
Worst-Case Bounds for Gaussian Process Models
Sham M. Kakade
,
Matthias W. Seeger
,
Dean P. Foster
COLT
2004
Deterministic Calibration and Nash Equilibrium
Sham M. Kakade
,
Dean P. Foster
ICML
1997
Characterizing the Generalization Performance of Model Selection Strategies
Dale Schuurmans
,
Lyle H. Ungar
,
Dean P. Foster