Francois-Lavet, Vincent

14 publications

NeurIPS 2025 Hadamax Encoding: Elevating Performance in Model-Free Atari Jacob Eeuwe Kooi, Zhao Yang, Vincent Francois-Lavet
TMLR 2025 Learning Task-Aware Abstract Representations for Meta-Reinforcement Learning Louk van Remmerden, Zhao Yang, Shujian Yu, Mark Hoogendoorn, Vincent Francois-Lavet
AAAI 2023 A Machine with Short-Term, Episodic, and Semantic Memory Systems Taewoon Kim, Michael Cochez, Vincent François-Lavet, Mark A. Neerincx, Piek Vossen
CLeaR 2023 A Meta-Reinforcement Learning Algorithm for Causal Discovery Andreas W.M. Sauter, Erman Acar, Vincent Francois-Lavet
MLJ 2022 Planning for Potential: Efficient Safe Reinforcement Learning Floris den Hengst, Vincent François-Lavet, Mark Hoogendoorn, Frank van Harmelen
IJCAI 2022 Reinforcement Learning with Option Machines Floris den Hengst, Vincent François-Lavet, Mark Hoogendoorn, Frank van Harmelen
NeurIPSW 2021 Component Transfer Learning for Deep RL Based on Abstract Representations Geoffrey Van Driessel, Vincent Francois-Lavet
IJCAI 2020 Handling Black Swan Events in Deep Learning with Diversely Extrapolated Neural Networks Maxime Wabartha, Audrey Durand, Vincent François-Lavet, Joelle Pineau
NeurIPS 2020 Novelty Search in Representational Space for Sample Efficient Exploration Ruo Yu Tao, Vincent Francois-Lavet, Joelle Pineau
IJCAI 2020 On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability (Extended Abstract) Vincent François-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, Raphael Fonteneau
AAAI 2019 Combined Reinforcement Learning via Abstract Representations Vincent François-Lavet, Yoshua Bengio, Doina Precup, Joelle Pineau
JAIR 2019 On Overfitting and Asymptotic Bias in Batch Reinforcement Learning with Partial Observability Vincent François-Lavet, Guillaume Rabusseau, Joelle Pineau, Damien Ernst, Raphael Fonteneau
FnTML 2018 An Introduction to Deep Reinforcement Learning Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G. Bellemare, Joelle Pineau
CoRL 2018 Reward Estimation for Variance Reduction in Deep Reinforcement Learning Joshua Romoff, Peter Henderson, Alexandre Piché, Vincent François-Lavet, Joelle Pineau