ML Anthology
Authors
Search
About
Frellsen, Jes
30 publications
TMLR
2026
Scalable Physical Source-to-Field Inference with Hypernetworks
Berian James
,
Stefan Pollok
,
Ignacio Peis
,
Elizabeth Louise Baker
,
Jes Frellsen
,
Rasmus Bjørk
AISTATS
2025
Bayesian Circular Regression with Von Mises Quasi-Processes
Yarden Cohen
,
Alexandre Khae Wu Navarro
,
Jes Frellsen
,
Richard E. Turner
,
Raziel Riemer
,
Ari Pakman
ICLRW
2025
Debiasing Guidance for Discrete Diffusion with Sequential Monte Carlo
Lee Cheuk Kit
,
Paul Jeha
,
Jes Frellsen
,
Pietro Lio
,
Michael Samuel Albergo
,
Francisco Vargas
ICML
2025
Hyper-Transforming Latent Diffusion Models
Ignacio Peis
,
Batuhan Koyuncu
,
Isabel Valera
,
Jes Frellsen
ICML
2025
Kinetic Langevin Diffusion for Crystalline Materials Generation
François R J Cornet
,
Federico Bergamin
,
Arghya Bhowmik
,
Juan Maria Garcia-Lastra
,
Jes Frellsen
,
Mikkel N. Schmidt
ICLRW
2025
Kinetic Langevin Diffusion for Crystalline Materials Generation
François R J Cornet
,
Federico Bergamin
,
Arghya Bhowmik
,
Juan Maria Garcia-Lastra
,
Jes Frellsen
,
Mikkel N. Schmidt
NeurIPS
2025
Zero-Shot Protein Stability Prediction by Inverse Folding Models: A Free Energy Interpretation
Jes Frellsen
,
Maher M. Kassem
,
Tone Bengtsen
,
Lars Olsen
,
Kresten Lindorff-Larsen
,
Jesper Ferkinghoff-Borg
,
Wouter Boomsma
TMLR
2024
Internal-Coordinate Density Modelling of Protein Structure: Covariance Matters
Marloes Arts
,
Jes Frellsen
,
Wouter Boomsma
ICMLW
2024
Variance Reduction of Diffusion Model's Gradients with Taylor Approximation-Based Control Variate
Paul Jeha
,
Will Sussman Grathwohl
,
Michael Riis Andersen
,
Carl Henrik Ek
,
Jes Frellsen
ICMLW
2024
Von Mises Quasi-Processes for Bayesian Circular Regression
Yarden Cohen
,
Alexandre Khae Wu Navarro
,
Jes Frellsen
,
Richard E. Turner
,
Raziel Riemer
,
Ari Pakman
AISTATS
2023
Adaptive Cholesky Gaussian Processes
Simon Bartels
,
Kristoffer Stensbo-Smidt
,
Pablo Moreno-Munoz
,
Wouter Boomsma
,
Jes Frellsen
,
Soren Hauberg
ICML
2023
Explainability as Statistical Inference
Hugo Henri Joseph Senetaire
,
Damien Garreau
,
Jes Frellsen
,
Pierre-Alexandre Mattei
NeurIPS
2023
Implicit Variational Inference for High-Dimensional Posteriors
Anshuk Uppal
,
Kristoffer Stensbo-Smidt
,
Wouter Boomsma
,
Jes Frellsen
JMLR
2023
Kernel-Matrix Determinant Estimates from Stopped Cholesky Decomposition
Simon Bartels
,
Wouter Boomsma
,
Jes Frellsen
,
Damien Garreau
TMLR
2023
Prior and Posterior Networks: A Survey on Evidential Deep Learning Methods for Uncertainty Estimation
Dennis Thomas Ulmer
,
Christian Hardmeier
,
Jes Frellsen
ICLR
2023
That Label's Got Style: Handling Label Style Bias for Uncertain Image Segmentation
Kilian Zepf
,
Eike Petersen
,
Jes Frellsen
,
Aasa Feragen
AISTATS
2022
Model-Agnostic Out-of-Distribution Detection Using Combined Statistical Tests
Federico Bergamin
,
Pierre-Alexandre Mattei
,
Jakob Drachmann Havtorn
,
Hugo Sénétaire
,
Hugo Schmutz
,
Lars Maaløe
,
Soren Hauberg
,
Jes Frellsen
ICLRW
2022
Benchmarking Generative Latent Variable Models for Speech
Jakob Drachmann Havtorn
,
Lasse Borgholt
,
Søren Hauberg
,
Jes Frellsen
,
Lars Maaløe
ICLR
2022
How to Deal with Missing Data in Supervised Deep Learning?
Niels Bruun Ipsen
,
Pierre-Alexandre Mattei
,
Jes Frellsen
NeurIPS
2021
Bounds All Around: Training Energy-Based Models with Bidirectional Bounds
Cong Geng
,
Jia Wang
,
Zhiyong Gao
,
Jes Frellsen
,
Søren Hauberg
ICML
2021
Hierarchical VAEs Know What They Don’t Know
Jakob D. Havtorn
,
Jes Frellsen
,
Søren Hauberg
,
Lars Maaløe
ICLR
2021
Not-MIWAE: Deep Generative Modelling with Missing Not at Random Data
Niels Bruun Ipsen
,
Pierre-Alexandre Mattei
,
Jes Frellsen
ICMLW
2020
How to Deal with Missing Data in Supervised Deep Learning?
Niels Bruun Ipsen
,
Pierre-Alexandre Mattei
,
Jes Frellsen
ICML
2019
MIWAE: Deep Generative Modelling and Imputation of Incomplete Data Sets
Pierre-Alexandre Mattei
,
Jes Frellsen
ICML
2019
Partially Exchangeable Networks and Architectures for Learning Summary Statistics in Approximate Bayesian Computation
Samuel Wiqvist
,
Pierre-Alexandre Mattei
,
Umberto Picchini
,
Jes Frellsen
NeurIPS
2018
Leveraging the Exact Likelihood of Deep Latent Variable Models
Pierre-Alexandre Mattei
,
Jes Frellsen
ECML-PKDD
2017
Comparative Study of Inference Methods for Bayesian Nonnegative Matrix Factorisation
Thomas Brouwer
,
Jes Frellsen
,
Pietro Liò
NeurIPS
2017
Spherical Convolutions and Their Application in Molecular Modelling
Wouter Boomsma
,
Jes Frellsen
AAAI
2017
The Multivariate Generalised Von Mises Distribution: Inference and Applications
Alexandre K. W. Navarro
,
Jes Frellsen
,
Richard E. Turner
AISTATS
2016
Bayesian Generalised Ensemble Markov Chain Monte Carlo
Jes Frellsen
,
Ole Winther
,
Zoubin Ghahramani
,
Jesper Ferkinghoff-Borg