ML Anthology
Authors
Search
About
Friedman, Nir
58 publications
ICML
2010
Continuous-Time Belief Propagation
Tal El-Hay
,
Ido Cohn
,
Nir Friedman
,
Raz Kupferman
JMLR
2010
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Ido Cohn
,
Tal El-Hay
,
Nir Friedman
,
Raz Kupferman
UAI
2009
Convexifying the Bethe Free Energy
Ofer Meshi
,
Ariel Jaimovich
,
Amir Globerson
,
Nir Friedman
UAI
2009
Mean Field Variational Approximation for Continuous-Time Bayesian Networks
Ido Cohn
,
Tal El-Hay
,
Nir Friedman
,
Raz Kupferman
UAI
2008
Gibbs Sampling in Factorized Continuous-Time Markov Processes
Tal El-Hay
,
Nir Friedman
,
Raz Kupferman
JMLR
2007
"Ideal Parent” Structure Learning for Continuous Variable Bayesian Networks
Gal Elidan
,
Iftach Nachman
,
Nir Friedman
UAI
2007
Template Based Inference in Symmetric Relational Markov Random Fields
Ariel Jaimovich
,
Ofer Meshi
,
Nir Friedman
UAI
2006
Continuous Time Markov Networks
Tal El-Hay
,
Nir Friedman
,
Daphne Koller
,
Raz Kupferman
UAI
2006
Dimension Reduction in Singularly Perturbed Continuous-Time Bayesian Networks
Nir Friedman
,
Raz Kupferman
JMLR
2005
Learning Hidden Variable Networks: The Information Bottleneck Approach
Gal Elidan
,
Nir Friedman
JMLR
2005
Learning Module Networks
Eran Segal
,
Dana Pe'er
,
Aviv Regev
,
Daphne Koller
,
Nir Friedman
UAI
2004
"Ideal Parent" Structure Learning for Continuous Variable Networks
Iftach Nachman
,
Gal Elidan
,
Nir Friedman
MLJ
2003
Being Bayesian About Network Structure. a Bayesian Approach to Structure Discovery in Bayesian Networks
Nir Friedman
,
Daphne Koller
UAI
2003
Learning Module Networks
Eran Segal
,
Dana Pe'er
,
Aviv Regev
,
Daphne Koller
,
Nir Friedman
UAI
2003
The Information Bottleneck EM Algorithm
Gal Elidan
,
Nir Friedman
AAAI
2002
Data Perturbation for Escaping Local Maxima in Learning
Gal Elidan
,
Matan Ninio
,
Nir Friedman
,
Dale Schuurmans
JMLR
2002
Learning Probabilistic Models of Link Structure
Lisa Getoor
,
Nir Friedman
,
Daphne Koller
,
Benjamin Taskar
UAI
2002
UAI '02, Proceedings of the 18th Conference in Uncertainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta, Canada, August 1-4, 2002
Adnan Darwiche
,
Nir Friedman
NeurIPS
2001
Agglomerative Multivariate Information Bottleneck
Noam Slonim
,
Nir Friedman
,
Naftali Tishby
UAI
2001
Incorporating Expressive Graphical Models in VariationalApproximations: Chain-Graphs and Hidden Variables
Tal El-Hay
,
Nir Friedman
ICML
2001
Learning Probabilistic Models of Relational Structure
Lise Getoor
,
Nir Friedman
,
Daphne Koller
,
Benjamin Taskar
UAI
2001
Learning the Dimensionality of Hidden Variables
Gal Elidan
,
Nir Friedman
UAI
2001
Multivariate Information Bottleneck
Nir Friedman
,
Ori Mosenzon
,
Noam Slonim
,
Naftali Tishby
UAI
2000
Being Bayesian About Network Structure
Nir Friedman
,
Daphne Koller
NeurIPS
2000
Discovering Hidden Variables: A Structure-Based Approach
Gal Elidan
,
Noam Lotner
,
Nir Friedman
,
Daphne Koller
UAI
2000
Gaussian Process Networks
Nir Friedman
,
Iftach Nachman
UAI
2000
Likelihood Computations Using Value Abstraction
Nir Friedman
,
Dan Geiger
,
Noam Lotner
UAI
1999
Data Analysis with Bayesian Networks: A Bootstrap Approach
Nir Friedman
,
Moisés Goldszmidt
,
Abraham J. Wyner
UAI
1999
Discovering the Hidden Structure of Complex Dynamic Systems
Xavier Boyen
,
Nir Friedman
,
Daphne Koller
AISTATS
1999
Efficient Learning Using Constrained Sufficient Statistics
Nir Friedman
,
Lise Getoor
UAI
1999
Learning Bayesian Network Structure from Massive Datasets: The "Sparse Candidate" Algorithm
Nir Friedman
,
Iftach Nachman
,
Dana Pe'er
IJCAI
1999
Learning Probabilistic Relational Models
Nir Friedman
,
Lise Getoor
,
Daphne Koller
,
Avi Pfeffer
UAI
1999
Model Based Bayesian Exploration
Richard Dearden
,
Nir Friedman
,
David Andre
JAIR
1999
Modeling Belief in Dynamic Systems, Part II: Revision and Update
Nir Friedman
,
Joseph Y. Halpern
ICML
1998
Bayesian Network Classification with Continuous Attributes: Getting the Best of Both Discretization and Parametric Fitting
Nir Friedman
,
Moisés Goldszmidt
,
Thomas J. Lee
AAAI
1998
Bayesian Q-Learning
Richard Dearden
,
Nir Friedman
,
Stuart Russell
AAAI
1998
Belief Revision with Unreliable Observations
Craig Boutilier
,
Nir Friedman
,
Joseph Y. Halpern
NeurIPS
1998
Efficient Bayesian Parameter Estimation in Large Discrete Domains
Nir Friedman
,
Yoram Singer
UAI
1998
Learning the Structure of Dynamic Probabilistic Networks
Nir Friedman
,
Kevin P. Murphy
,
Stuart Russell
AAAI
1998
Structured Representation of Complex Stochastic Systems
Nir Friedman
,
Daphne Koller
,
Avi Pfeffer
UAI
1998
The Bayesian Structural EM Algorithm
Nir Friedman
MLJ
1997
Bayesian Network Classifiers
Nir Friedman
,
Dan Geiger
,
Moisés Goldszmidt
IJCAI
1997
Challenge: What Is the Impact of Bayesian Networks on Learning?
Nir Friedman
,
Moisés Goldszmidt
,
David Heckerman
,
Stuart Russell
NeurIPS
1997
Generalized Prioritized Sweeping
David Andre
,
Nir Friedman
,
Ronald Parr
UAI
1997
Image Segmentation in Video Sequences: A Probabilistic Approach
Nir Friedman
,
Stuart Russell
ICML
1997
Learning Belief Networks in the Presence of Missing Values and Hidden Variables
Nir Friedman
UAI
1997
Sequential Update of Bayesian Network Structure
Nir Friedman
,
Moisés Goldszmidt
UAI
1996
A Qualitative Markov Assumption and Its Implications for Belief Change
Nir Friedman
,
Joseph Y. Halpern
AAAI
1996
Building Classifiers Using Bayesian Networks
Nir Friedman
,
Moisés Goldszmidt
UAI
1996
Context-Specific Independence in Bayesian Networks
Craig Boutilier
,
Nir Friedman
,
Moisés Goldszmidt
,
Daphne Koller
ICML
1996
Discretizing Continuous Attributes While Learning Bayesian Networks
Nir Friedman
,
Moisés Goldszmidt
AAAI
1996
First-Order Conditional Logic Revisited
Nir Friedman
,
Joseph Y. Halpern
,
Daphne Koller
UAI
1996
Learning Bayesian Networks with Local Structure
Nir Friedman
,
Moisés Goldszmidt
UAI
1996
On the Sample Complexity of Learning Bayesian Networks
Nir Friedman
,
Zohar Yakhini
AAAI
1996
Plausibility Measures and Default Reasoning
Nir Friedman
,
Joseph Y. Halpern
IJCAI
1995
On Decision-Theoretic Foundations for Defaults
Ronen I. Brafman
,
Nir Friedman
UAI
1995
Plausibility Measures: A User's Guide
Nir Friedman
,
Joseph Y. Halpern
AAAI
1994
Conditional Logics of Belief Change
Nir Friedman
,
Joseph Y. Halpern