Frossard, Pascal

53 publications

AISTATS 2025 Causal Temporal Regime Structure Learning Abdellah Rahmani, Pascal Frossard
ICML 2025 DeFoG: Discrete Flow Matching for Graph Generation Yiming Qin, Manuel Madeira, Dorina Thanou, Pascal Frossard
TMLR 2025 Distributional Reduction: Unifying Dimensionality Reduction and Clustering with Gromov-Wasserstein Hugues Van Assel, Cédric Vincent-Cuaz, Nicolas Courty, Rémi Flamary, Pascal Frossard, Titouan Vayer
NeurIPS 2025 Flow Based Approach for Dynamic Temporal Causal Models with Non-Gaussian or Heteroscedastic Noises Abdellah Rahmani, Pascal Frossard
ICLRW 2025 Graph Discrete Diffusion: A Spectral Study Olga Zaghen, Manuel Madeira, Laura Toni, Pascal Frossard
ICML 2025 How Compositional Generalization and Creativity Improve as Diffusion Models Are Trained Alessandro Favero, Antonio Sclocchi, Francesco Cagnetta, Pascal Frossard, Matthieu Wyart
ICLRW 2025 How Compositional Generalization and Creativity Improve as Diffusion Models Are Trained Alessandro Favero, Antonio Sclocchi, Francesco Cagnetta, Pascal Frossard, Matthieu Wyart
NeurIPS 2025 Inductive Domain Transfer in Misspecified Simulation-Based Inference Ortal Senouf, Antoine Wehenkel, Cédric Vincent-Cuaz, Emmanuel Abbe, Pascal Frossard
ICLR 2025 LiNeS: Post-Training Layer Scaling Prevents Forgetting and Enhances Model Merging Ke Wang, Nikolaos Dimitriadis, Alessandro Favero, Guillermo Ortiz-Jimenez, François Fleuret, Pascal Frossard
NeurIPS 2025 MEMOIR: Lifelong Model Editing with Minimal Overwrite and Informed Retention for LLMs Ke Wang, Yiming Qin, Nikolaos Dimitriadis, Alessandro Favero, Pascal Frossard
ICLRW 2025 On the Role of Structure in Hierarchical Graph Neural Networks Luca Sbicego, Sevda Öğüt, Manuel Madeira, Yiming Qin, Dorina Thanou, Pascal Frossard
ICLR 2025 Pareto Low-Rank Adapters: Efficient Multi-Task Learning with Preferences Nikolaos Dimitriadis, Pascal Frossard, François Fleuret
TMLR 2025 SparseDiff: Sparse Discrete Diffusion for Scalable Graph Generation Yiming Qin, Clement Vignac, Pascal Frossard
AISTATS 2024 Bures-Wasserstein Means of Graphs Isabel Haasler, Pascal Frossard
NeurIPS 2024 Generative Modelling of Structurally Constrained Graphs Manuel Madeira, Clément Vignac, Dorina Thanou, Pascal Frossard
CVPR 2024 IS-Fusion: Instance-Scene Collaborative Fusion for Multimodal 3D Object Detection Junbo Yin, Jianbing Shen, Runnan Chen, Wei Li, Ruigang Yang, Pascal Frossard, Wenguan Wang
ICML 2024 Localizing Task Information for Improved Model Merging and Compression Ke Wang, Nikolaos Dimitriadis, Guillermo Ortiz-Jimenez, François Fleuret, Pascal Frossard
NeurIPSW 2024 NMT-Obfuscator Attack: Ignore a Sentence in Translation with Only One Word Sahar Sadrizadeh, César Descalzo, Ljiljana Dolamic, Pascal Frossard
ICML 2024 Pi-DUAL: Using Privileged Information to Distinguish Clean from Noisy Labels Ke Wang, Guillermo Ortiz-Jimenez, Rodolphe Jenatton, Mark Collier, Efi Kokiopoulou, Pascal Frossard
ECCV 2024 Sequential Representation Learning via Static-Dynamic Conditional Disentanglement Mathieu Cyrille Simon, Pascal Frossard, Christophe De Vleeschouwer
ICMLW 2024 Task Addition and Weight Disentanglement in Closed-Vocabulary Models Adam Hazimeh, Alessandro Favero, Pascal Frossard
TMLR 2023 Catastrophic Overfitting Can Be Induced with Discriminative Non-Robust Features Guillermo Ortiz-Jimenez, Pau de Jorge, Amartya Sanyal, Adel Bibi, Puneet K. Dokania, Pascal Frossard, Grégory Rogez, Philip Torr
ICLR 2023 DiGress: Discrete Denoising Diffusion for Graph Generation Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, Pascal Frossard
NeurIPSW 2023 Inferring Cardiovascular Biomarkers with Hybrid Model Learning Ortal Senouf, Jens Behrmann, Joern-Henrik Jacobsen, Pascal Frossard, Emmanuel Abbe, Antoine Wehenkel
ECML-PKDD 2023 Knowledge Distillation with Graph Neural Networks for Epileptic Seizure Detection Qinyue Zheng, Arun Venkitaraman, Simona Petravic, Pascal Frossard
ECML-PKDD 2023 MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation Clément Vignac, Nagham Osman, Laura Toni, Pascal Frossard
ICLRW 2023 MiDi: Mixed Graph and 3D Denoising Diffusion for Molecule Generation Clement Vignac, Nagham Osman, Laura Toni, Pascal Frossard
ECML-PKDD 2023 Online Network Source Optimization with Graph-Kernel MAB Laura Toni, Pascal Frossard
ICML 2023 Pareto Manifold Learning: Tackling Multiple Tasks via Ensembles of Single-Task Models Nikolaos Dimitriadis, Pascal Frossard, François Fleuret
AAAI 2023 SSDA3D: Semi-Supervised Domain Adaptation for 3D Object Detection from Point Cloud Yan Wang, Junbo Yin, Wei Li, Pascal Frossard, Ruigang Yang, Jianbing Shen
NeurIPS 2023 Task Arithmetic in the Tangent Space: Improved Editing of Pre-Trained Models Guillermo Ortiz-Jimenez, Alessandro Favero, Pascal Frossard
TMLR 2023 TransFool: An Adversarial Attack Against Neural Machine Translation Models Sahar Sadrizadeh, Ljiljana Dolamic, Pascal Frossard
CVPR 2022 A Structured Dictionary Perspective on Implicit Neural Representations Gizem Yüce, Guillermo Ortiz-Jiménez, Beril Besbinar, Pascal Frossard
NeurIPSW 2022 Equivariant 3D-Conditional Diffusion Models for Molecular Linker Design Ilia Igashov, Hannes Stärk, Clement Vignac, Victor Garcia Satorras, Pascal Frossard, Max Welling, Michael M. Bronstein, Bruno Correia
ICLR 2022 Fooling Explanations in Text Classifiers Adam Ivankay, Ivan Girardi, Chiara Marchiori, Pascal Frossard
ECCV 2022 PRIME: A Few Primitives Can Boost Robustness to Common Corruptions Apostolos Modas, Rahul Rade, Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard
ICLR 2022 Top-N: Equivariant Set and Graph Generation Without Exchangeability Clement Vignac, Pascal Frossard
ECCV 2022 U-Boost NAS: Utilization-Boosted Differentiable Neural Architecture Search Ahmet Caner Yüzügüler, Nikolaos Dimitriadis, Pascal Frossard
AAAI 2022 fGOT: Graph Distances Based on Filters and Optimal Transport Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, Pascal Frossard
NeurIPS 2021 What Can Linearized Neural Networks Actually Say About Generalization? Guillermo Ortiz-Jimenez, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard
NeurIPS 2020 Building Powerful and Equivariant Graph Neural Networks with Structural Message-Passing Clément Vignac, Andreas Loukas, Pascal Frossard
NeurIPS 2020 Hold Me Tight! Influence of Discriminative Features on Deep Network Boundaries Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi, Pascal Frossard
NeurIPS 2020 Neural Anisotropy Directions Guillermo Ortiz-Jimenez, Apostolos Modas, Seyed-Mohsen Moosavi, Pascal Frossard
NeurIPS 2019 GOT: An Optimal Transport Framework for Graph Comparison Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, Pascal Frossard
ICML 2019 Geometry Aware Convolutional Filters for Omnidirectional Images Representation Renata Khasanova, Pascal Frossard
AAAI 2018 Adaptive Quantization for Deep Neural Network Yiren Zhou, Seyed-Mohsen Moosavi-Dezfooli, Ngai-Man Cheung, Pascal Frossard
MLJ 2018 Analysis of Classifiers' Robustness to Adversarial Perturbations Alhussein Fawzi, Omar Fawzi, Pascal Frossard
ICLR 2018 Robustness of Classifiers to Universal Perturbations: A Geometric Perspective Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard, Stefano Soatto
ICCVW 2017 Graph-Based Classification of Omnidirectional Images Pascal Frossard, Renata Khasanova
ICML 2017 Graph-Based Isometry Invariant Representation Learning Renata Khasanova, Pascal Frossard
CVPR 2017 Universal Adversarial Perturbations Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Omar Fawzi, Pascal Frossard
CVPR 2016 DeepFool: A Simple and Accurate Method to Fool Deep Neural Networks Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Pascal Frossard
NeurIPS 2016 Robustness of Classifiers: From Adversarial to Random Noise Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, Pascal Frossard