Garber, Dan

31 publications

COLT 2025 Blackwell’s Approachability with Approximation Algorithms Dan Garber, Massalha Mhna
ICML 2024 Projection-Free Online Convex Optimization with Time-Varying Constraints Dan Garber, Ben Kretzu
AISTATS 2023 Faster Projection-Free Augmented Lagrangian Methods via Weak Proximal Oracle Dan Garber, Tsur Livney, Shoham Sabach
COLT 2023 Projection-Free Online Exp-Concave Optimization Dan Garber, Ben Kretzu
NeurIPS 2022 Frank-Wolfe-Based Algorithms for Approximating Tyler's M-Estimator Lior Danon, Dan Garber
NeurIPS 2022 Local Linear Convergence of Gradient Methods for Subspace Optimization via Strict Complementarity Ron Fisher, Dan Garber
COLT 2022 New Projection-Free Algorithms for Online Convex Optimization with Adaptive Regret Guarantees Dan Garber, Ben Kretzu
AISTATS 2021 Revisiting Projection-Free Online Learning: The Strongly Convex Case Ben Kretzu, Dan Garber
COLT 2021 Frank-Wolfe with a Nearest Extreme Point Oracle Dan Garber, Noam Wolf
NeurIPS 2021 Low-Rank Extragradient Method for Nonsmooth and Low-Rank Matrix Optimization Problems Atara Kaplan, Dan Garber
AISTATS 2020 Improved Regret Bounds for Projection-Free Bandit Convex Optimization Dan Garber, Ben Kretzu
COLT 2020 On the Convergence of Stochastic Gradient Descent with Low-Rank Projections for Convex Low-Rank Matrix Problems Dan Garber
ICML 2020 Online Convex Optimization in the Random Order Model Dan Garber, Gal Korcia, Kfir Levy
NeurIPS 2020 Revisiting Frank-Wolfe for Polytopes: Strict Complementarity and Sparsity Dan Garber
AISTATS 2019 Fast Stochastic Algorithms for Low-Rank and Nonsmooth Matrix Problems Dan Garber, Atara Kaplan
AISTATS 2019 Logarithmic Regret for Online Gradient Descent Beyond Strong Convexity Dan Garber
COLT 2019 On the Regret Minimization of Nonconvex Online Gradient Ascent for Online PCA Dan Garber
JMLR 2019 Stochastic Canonical Correlation Analysis Chao Gao, Dan Garber, Nathan Srebro, Jialei Wang, Weiran Wang
ALT 2018 Efficient Coordinate-Wise Leading Eigenvector Computation Jialei Wang, Weiran Wang, Dan Garber, Nathan Srebro
ICML 2017 Communication-Efficient Algorithms for Distributed Stochastic Principal Component Analysis Dan Garber, Ohad Shamir, Nathan Srebro
NeurIPS 2017 Efficient Online Linear Optimization with Approximation Algorithms Dan Garber
NeurIPS 2016 Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis Weiran Wang, Jialei Wang, Dan Garber, Dan Garber, Nati Srebro
NeurIPS 2016 Efficient Globally Convergent Stochastic Optimization for Canonical Correlation Analysis Weiran Wang, Jialei Wang, Dan Garber, Dan Garber, Nati Srebro
ICML 2016 Faster Eigenvector Computation via Shift-and-Invert Preconditioning Dan Garber, Elad Hazan, Chi Jin, Sham, Cameron Musco, Praneeth Netrapalli, Aaron Sidford
NeurIPS 2016 Faster Projection-Free Convex Optimization over the Spectrahedron Dan Garber, Dan Garber
NeurIPS 2016 Faster Projection-Free Convex Optimization over the Spectrahedron Dan Garber, Dan Garber
NeurIPS 2016 Linear-Memory and Decomposition-Invariant Linearly Convergent Conditional Gradient Algorithm for Structured Polytopes Dan Garber, Dan Garber, Ofer Meshi
NeurIPS 2016 Linear-Memory and Decomposition-Invariant Linearly Convergent Conditional Gradient Algorithm for Structured Polytopes Dan Garber, Dan Garber, Ofer Meshi
ICML 2015 Faster Rates for the Frank-Wolfe Method over Strongly-Convex Sets Dan Garber, Elad Hazan
ICML 2015 Online Learning of Eigenvectors Dan Garber, Elad Hazan, Tengyu Ma
NeurIPS 2011 Approximating Semidefinite Programs in Sublinear Time Dan Garber, Elad Hazan