ML Anthology
Authors
Search
About
Gardner, Jacob
26 publications
NeurIPS
2024
Generative Adversarial Model-Based Optimization via Source Critic Regularization
Michael S. Yao
,
Yimeng Zeng
,
Hamsa Bastani
,
Jacob Gardner
,
James C. Gee
,
Osbert Bastani
AISTATS
2024
Large-Scale Gaussian Processes via Alternating Projection
Kaiwen Wu
,
Jonathan Wenger
,
Haydn T Jones
,
Geoff Pleiss
,
Jacob Gardner
AISTATS
2024
Linear Convergence of Black-Box Variational Inference: Should We Stick the Landing?
Kyurae Kim
,
Yian Ma
,
Jacob Gardner
AISTATS
2024
Stochastic Approximation with Biased MCMC for Expectation Maximization
Samuel Gruffaz
,
Kyurae Kim
,
Alain Durmus
,
Jacob Gardner
AISTATS
2023
Discovering Many Diverse Solutions with Bayesian Optimization
Natalie Maus
,
Kaiwen Wu
,
David Eriksson
,
Jacob Gardner
NeurIPS
2023
On the Convergence of Black-Box Variational Inference
Kyurae Kim
,
Jisu Oh
,
Kaiwen Wu
,
Yian Ma
,
Jacob Gardner
NeurIPS
2023
The Behavior and Convergence of Local Bayesian Optimization
Kaiwen Wu
,
Kyurae Kim
,
Roman Garnett
,
Jacob Gardner
NeurIPS
2023
Variational Gaussian Processes with Decoupled Conditionals
Xinran Zhu
,
Kaiwen Wu
,
Natalie Maus
,
Jacob Gardner
,
David Bindel
NeurIPS
2022
Local Bayesian Optimization via Maximizing Probability of Descent
Quan Nguyen
,
Kaiwen Wu
,
Jacob Gardner
,
Roman Garnett
NeurIPS
2022
Local Latent Space Bayesian Optimization over Structured Inputs
Natalie Maus
,
Haydn Jones
,
Juston Moore
,
Matt J Kusner
,
John Bradshaw
,
Jacob Gardner
NeurIPS
2022
Markov Chain Score Ascent: A Unifying Framework of Variational Inference with Markovian Gradients
Kyurae Kim
,
Jisu Oh
,
Jacob Gardner
,
Adji Bousso Dieng
,
Hongseok Kim
ICML
2022
Preconditioning for Scalable Gaussian Process Hyperparameter Optimization
Jonathan Wenger
,
Geoff Pleiss
,
Philipp Hennig
,
John Cunningham
,
Jacob Gardner
NeurIPS
2021
Scaling Gaussian Processes with Derivative Information Using Variational Inference
Misha Padidar
,
Xinran Zhu
,
Leo Huang
,
Jacob Gardner
,
David Bindel
UAI
2020
Deep Sigma Point Processes
Martin Jankowiak
,
Geoff Pleiss
,
Jacob Gardner
NeurIPS
2020
Efficient Nonmyopic Bayesian Optimization via One-Shot Multi-Step Trees
Shali Jiang
,
Daniel Jiang
,
Maximilian Balandat
,
Brian Karrer
,
Jacob Gardner
,
Roman Garnett
NeurIPS
2020
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
Geoff Pleiss
,
Martin Jankowiak
,
David Eriksson
,
Anil Damle
,
Jacob Gardner
ICML
2020
Parametric Gaussian Process Regressors
Martin Jankowiak
,
Geoff Pleiss
,
Jacob Gardner
NeurIPS
2019
Exact Gaussian Processes on a Million Data Points
Ke Wang
,
Geoff Pleiss
,
Jacob Gardner
,
Stephen Tyree
,
Kilian Q. Weinberger
,
Andrew Gordon Wilson
NeurIPS
2019
Scalable Global Optimization via Local Bayesian Optimization
David Eriksson
,
Michael Pearce
,
Jacob Gardner
,
Ryan D Turner
,
Matthias Poloczek
ICML
2019
Simple Black-Box Adversarial Attacks
Chuan Guo
,
Jacob Gardner
,
Yurong You
,
Andrew Gordon Wilson
,
Kilian Weinberger
ICML
2018
Constant-Time Predictive Distributions for Gaussian Processes
Geoff Pleiss
,
Jacob Gardner
,
Kilian Weinberger
,
Andrew Gordon Wilson
NeurIPS
2018
GPyTorch: Blackbox Matrix-Matrix Gaussian Process Inference with GPU Acceleration
Jacob Gardner
,
Geoff Pleiss
,
Kilian Q. Weinberger
,
David Bindel
,
Andrew G Wilson
CVPR
2017
Deep Feature Interpolation for Image Content Changes
Paul Upchurch
,
Jacob Gardner
,
Geoff Pleiss
,
Robert Pless
,
Noah Snavely
,
Kavita Bala
,
Kilian Weinberger
NeurIPS
2015
Bayesian Active Model Selection with an Application to Automated Audiometry
Jacob Gardner
,
Gustavo Malkomes
,
Roman Garnett
,
Kilian Q. Weinberger
,
Dennis Barbour
,
John P. Cunningham
ICML
2015
Differentially Private Bayesian Optimization
Matt Kusner
,
Jacob Gardner
,
Roman Garnett
,
Kilian Weinberger
ICML
2014
Bayesian Optimization with Inequality Constraints
Jacob Gardner
,
Matt Kusner
,
Zhixiang
,
Kilian Weinberger
,
John Cunningham