ML Anthology
Authors
Search
About
Garg, Vikas
43 publications
ICLR
2025
Diffusion Models as Cartoonists: The Curious Case of High Density Regions
Rafal Karczewski
,
Markus Heinonen
,
Vikas Garg
ICLR
2025
E(3)-Equivariant Models Cannot Learn Chirality: Field-Based Molecular Generation
Alexandru Dumitrescu
,
Dani Korpela
,
Markus Heinonen
,
Yogesh Verma
,
Valerii Iakovlev
,
Vikas Garg
,
Harri Lähdesmäki
ICLR
2025
Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models
Najwa Laabid
,
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
,
Vikas Garg
ICLR
2025
Generalization and Distributed Learning of GFlowNets
Tiago Silva
,
Amauri H Souza
,
Omar Rivasplata
,
Vikas Garg
,
Samuel Kaski
,
Diego Mesquita
ICLR
2025
Robust Simulation-Based Inference Under Missing Data via Neural Processes
Yogesh Verma
,
Ayush Bharti
,
Vikas Garg
ICLR
2025
When Do GFlowNets Learn the Right Distribution?
Tiago Silva
,
Rodrigo Barreto Alves
,
Eliezer de Souza da Silva
,
Amauri H Souza
,
Vikas Garg
,
Samuel Kaski
,
Diego Mesquita
NeurIPS
2024
Algebraic Positional Encodings
Konstantinos Kogkalidis
,
Jean-Philippe Bernardy
,
Vikas Garg
ICMLW
2024
Aligned Diffusion Models for Retrosynthesis
Najwa Laabid
,
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
,
Vikas Garg
ICMLW
2024
Aligned Diffusion Models for Retrosynthesis
Najwa Laabid
,
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
,
Vikas Garg
ICMLW
2024
Analyzing GFlowNets: Stability, Expressiveness, and Assessment
Tiago Silva
,
Eliezer de Souza da Silva
,
Rodrigo Barreto Alves
,
Luiz Max Carvalho
,
Amauri H Souza
,
Samuel Kaski
,
Vikas Garg
,
Diego Mesquita
ICLR
2024
ClimODE: Climate and Weather Forecasting with Physics-Informed Neural ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
NeurIPS
2024
Compositional PAC-Bayes: Generalization of GNNs with Persistence and Beyond
Kirill Brilliantov
,
Amauri H. Souza
,
Vikas Garg
ICMLW
2024
Conditional Flow Matching for Time Series Modelling
Ella Tamir
,
Najwa Laabid
,
Markus Heinonen
,
Vikas Garg
,
Arno Solin
NeurIPS
2024
Diffusion Twigs with Loop Guidance for Conditional Graph Generation
Giangiacomo Mercatali
,
Yogesh Verma
,
Andre Freitas
,
Vikas Garg
ICML
2024
On the Generalization of Equivariant Graph Neural Networks
Rafal Karczewski
,
Amauri H Souza
,
Vikas Garg
NeurIPSW
2024
PACE: Procedural Abstractions for Communicating Efficiently
Jonathan David Thomas
,
Andrea Silvi
,
Devdatt Dubhashi
,
Vikas Garg
,
Moa Johansson
ICMLW
2024
Topological Neural Networks Go Persistent, Equivariant and Continuous
Yogesh Verma
,
Amauri H Souza
,
Vikas Garg
ICML
2024
Topological Neural Networks Go Persistent, Equivariant, and Continuous
Yogesh Verma
,
Amauri H Souza
,
Vikas Garg
NeurIPS
2024
What Do Graph Neural Networks Learn? Insights from Tropical Geometry
Tuan Anh Pham
,
Vikas Garg
ICML
2023
AbODE: Ab Initio Antibody Design Using Conjoined ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
ICMLW
2023
AbODE: Ab Initio Antibody Design Using Conjoined ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
ICMLW
2023
AbODE: Ab Initio Antibody Design Using Conjoined ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
NeurIPS
2023
Compositional Sculpting of Iterative Generative Processes
Timur Garipov
,
Sebastiaan De Peuter
,
Ge Yang
,
Vikas Garg
,
Samuel Kaski
,
Tommi Jaakkola
NeurIPS
2023
Going Beyond Persistent Homology Using Persistent Homology
Johanna Immonen
,
Amauri Souza
,
Vikas Garg
NeurIPS
2022
Are GANs Overkill for NLP?
David Alvarez-Melis
,
Vikas Garg
,
Adam Kalai
NeurIPS
2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
,
Samuel Kaski
,
Markus Heinonen
,
Vikas Garg
NeurIPSW
2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
,
Samuel Kaski
,
Markus Heinonen
,
Vikas Garg
NeurIPSW
2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
,
Samuel Kaski
,
Markus Heinonen
,
Vikas Garg
NeurIPS
2022
Provably Expressive Temporal Graph Networks
Amauri Souza
,
Diego Mesquita
,
Samuel Kaski
,
Vikas Garg
NeurIPSW
2022
Provably Expressive Temporal Graph Networks
Amauri H Souza
,
Diego Mesquita
,
Samuel Kaski
,
Vikas Garg
NeurIPS
2022
Symmetry-Induced Disentanglement on Graphs
Giangiacomo Mercatali
,
Andre Freitas
,
Vikas Garg
AISTATS
2021
Learn to Expect the Unexpected: Probably Approximately Correct Domain Generalization
Vikas Garg
,
Adam Tauman Kalai
,
Katrina Ligett
,
Steven Wu
ICML
2020
Generalization and Representational Limits of Graph Neural Networks
Vikas Garg
,
Stefanie Jegelka
,
Tommi Jaakkola
ICML
2020
Predicting Deliberative Outcomes
Vikas Garg
,
Tommi Jaakkola
NeurIPS
2019
Generative Models for Graph-Based Protein Design
John Ingraham
,
Vikas Garg
,
Regina Barzilay
,
Tommi Jaakkola
NeurIPS
2019
Online Markov Decoding: Lower Bounds and Near-Optimal Approximation Algorithms
Vikas Garg
,
Tamar Pichkhadze
NeurIPS
2019
Solving Graph Compression via Optimal Transport
Vikas Garg
,
Tommi Jaakkola
NeurIPS
2018
Learning SMaLL Predictors
Vikas Garg
,
Ofer Dekel
,
Lin Xiao
NeurIPS
2018
Supervising Unsupervised Learning
Vikas Garg
,
Adam T Kalai
NeurIPS
2017
Local Aggregative Games
Vikas Garg
,
Tommi Jaakkola
NeurIPS
2016
Learning Tree Structured Potential Games
Vikas Garg
,
Tommi Jaakkola
ICML
2014
Multiresolution Matrix Factorization
Risi Kondor
,
Nedelina Teneva
,
Vikas Garg
NeurIPS
2013
Adaptivity to Local Smoothness and Dimension in Kernel Regression
Samory Kpotufe
,
Vikas Garg