ML Anthology
Authors
Search
About
Gayen, Sutanu
11 publications
ICLR
2025
Computational Explorations of Total Variation Distance
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S. Meel
,
Dimitrios Myrisiotis
,
A. Pavan
,
N. V. Vinodchandran
NeurIPS
2025
Distribution Learning Meets Graph Structure Sampling
Arnab Bhattacharyya
,
Sutanu Gayen
,
Philips George John
,
Sayantan Sen
,
N. V. Vinodchandran
AAAI
2025
Learnability of Parameter-Bounded Bayes Nets
Arnab Bhattacharyya
,
Davin Choo
,
Sutanu Gayen
,
Dimitrios Myrisiotis
ICMLW
2024
Learnability of Parameter-Bounded Bayes Nets
Arnab Bhattacharyya
,
Davin Choo
,
Sutanu Gayen
,
Dimitrios Myrisiotis
ICML
2024
Total Variation Distance Meets Probabilistic Inference
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S. Meel
,
Dimitrios Myrisiotis
,
A. Pavan
,
N. V. Vinodchandran
IJCAI
2023
On Approximating Total Variation Distance
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S. Meel
,
Dimitrios Myrisiotis
,
A. Pavan
,
N. V. Vinodchandran
AISTATS
2022
Efficient Interventional Distribution Learning in the PAC Framework
Arnab Bhattacharyya
,
Sutanu Gayen
,
Saravanan Kandasamy
,
Vedant Raval
,
Vinodchandran N. Variyam
AISTATS
2022
Learning Sparse Fixed-Structure Gaussian Bayesian Networks
Arnab Bhattacharyya
,
Davin Choo
,
Rishikesh Gajjala
,
Sutanu Gayen
,
Yuhao Wang
ALT
2021
Testing Product Distributions: A Closer Look
Arnab Bhattacharyya
,
Sutanu Gayen
,
Saravanan Kandasamy
,
N. V. Vinodchandran
NeurIPS
2020
Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning
Arnab Bhattacharyya
,
Sutanu Gayen
,
Kuldeep S Meel
,
N. V. Vinodchandran
ICML
2020
Learning and Sampling of Atomic Interventions from Observations
Arnab Bhattacharyya
,
Sutanu Gayen
,
Saravanan Kandasamy
,
Ashwin Maran
,
Vinodchandran N. Variyam