Gayen, Sutanu

11 publications

ICLR 2025 Computational Explorations of Total Variation Distance Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran
NeurIPS 2025 Distribution Learning Meets Graph Structure Sampling Arnab Bhattacharyya, Sutanu Gayen, Philips George John, Sayantan Sen, N. V. Vinodchandran
AAAI 2025 Learnability of Parameter-Bounded Bayes Nets Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis
ICMLW 2024 Learnability of Parameter-Bounded Bayes Nets Arnab Bhattacharyya, Davin Choo, Sutanu Gayen, Dimitrios Myrisiotis
ICML 2024 Total Variation Distance Meets Probabilistic Inference Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran
IJCAI 2023 On Approximating Total Variation Distance Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S. Meel, Dimitrios Myrisiotis, A. Pavan, N. V. Vinodchandran
AISTATS 2022 Efficient Interventional Distribution Learning in the PAC Framework Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Vedant Raval, Vinodchandran N. Variyam
AISTATS 2022 Learning Sparse Fixed-Structure Gaussian Bayesian Networks Arnab Bhattacharyya, Davin Choo, Rishikesh Gajjala, Sutanu Gayen, Yuhao Wang
ALT 2021 Testing Product Distributions: A Closer Look Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, N. V. Vinodchandran
NeurIPS 2020 Efficient Distance Approximation for Structured High-Dimensional Distributions via Learning Arnab Bhattacharyya, Sutanu Gayen, Kuldeep S Meel, N. V. Vinodchandran
ICML 2020 Learning and Sampling of Atomic Interventions from Observations Arnab Bhattacharyya, Sutanu Gayen, Saravanan Kandasamy, Ashwin Maran, Vinodchandran N. Variyam