ML Anthology
Authors
Search
About
Germain, Pascal
32 publications
ICML
2025
Generalization Bounds via Meta-Learned Model Representations: PAC-Bayes and Sample Compression Hypernetworks
Benjamin Leblanc
,
Mathieu Bazinet
,
Nathaniel D’Amours
,
Alexandre Drouin
,
Pascal Germain
AISTATS
2025
Sample Compression Unleashed: New Generalization Bounds for Real Valued Losses
Mathieu Bazinet
,
Valentina Zantedeschi
,
Pascal Germain
MLJ
2024
A General Framework for the Practical Disintegration of PAC-Bayesian Bounds
Paul Viallard
,
Pascal Germain
,
Amaury Habrard
,
Emilie Morvant
NeurIPSW
2024
Sample Compression Hypernetworks: From Generalization Bounds to Meta-Learning
Benjamin Leblanc
,
Mathieu Bazinet
,
Nathaniel D'Amours
,
Alexandre Drouin
,
Pascal Germain
NeurIPSW
2024
Sample Compression Unleashed : New Generalization Bounds for Real Valued Losses
Mathieu Bazinet
,
Valentina Zantedeschi
,
Pascal Germain
NeurIPSW
2024
Sample Compression Unleashed : New Generalization Bounds for Real Valued Losses
Mathieu Bazinet
,
Valentina Zantedeschi
,
Pascal Germain
JMLR
2023
Erratum: Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
Louis-Philippe Vignault
,
Audrey Durand
,
Pascal Germain
ICML
2023
PAC-Bayesian Generalization Bounds for Adversarial Generative Models
Sokhna Diarra Mbacke
,
Florence Clerc
,
Pascal Germain
UAI
2023
Sample Boosting Algorithm (SamBA) - An Interpretable Greedy Ensemble Classifier Based on Local Expertise for Fat Data
Baptiste Bauvin
,
Cécile Capponi
,
Florence Clerc
,
Pascal Germain
,
Sokol Koço
,
Jacques Corbeil
NeurIPS
2023
Statistical Guarantees for Variational Autoencoders Using PAC-Bayesian Theory
Sokhna Diarra Mbacke
,
Florence Clerc
,
Pascal Germain
AAAI
2022
Interpretable Domain Adaptation for Hidden Subdomain Alignment in the Context of Pre-Trained Source Models
Luxin Zhang
,
Pascal Germain
,
Yacine Kessaci
,
Christophe Biernacki
NeurIPS
2021
Learning Stochastic Majority Votes by Minimizing a PAC-Bayes Generalization Bound
Valentina Zantedeschi
,
Paul Viallard
,
Emilie Morvant
,
Rémi Emonet
,
Amaury Habrard
,
Pascal Germain
,
Benjamin Guedj
ECML-PKDD
2021
Self-Bounding Majority Vote Learning Algorithms by the Direct Minimization of a Tight PAC-Bayesian C-Bound
Paul Viallard
,
Pascal Germain
,
Amaury Habrard
,
Emilie Morvant
AAAI
2020
Improved PAC-Bayesian Bounds for Linear Regression
Vera Shalaeva
,
Alireza Fakhrizadeh Esfahani
,
Pascal Germain
,
Mihály Petreczky
ECML-PKDD
2020
Landmark-Based Ensemble Learning with Random Fourier Features and Gradient Boosting
Léo Gautheron
,
Pascal Germain
,
Amaury Habrard
,
Guillaume Metzler
,
Emilie Morvant
,
Marc Sebban
,
Valentina Zantedeschi
UAI
2020
PAC-Bayesian Contrastive Unsupervised Representation Learning
Kento Nozawa
,
Pascal Germain
,
Benjamin Guedj
ECML-PKDD
2020
Target to Source Coordinate-Wise Adaptation of Pre-Trained Models
Luxin Zhang
,
Pascal Germain
,
Yacine Kessaci
,
Christophe Biernacki
NeurIPS
2019
Dichotomize and Generalize: PAC-Bayesian Binary Activated Deep Neural Networks
Gaël Letarte
,
Pascal Germain
,
Benjamin Guedj
,
Francois Laviolette
AISTATS
2019
Pseudo-Bayesian Learning with Kernel Fourier Transform as Prior
Gaël Letarte
,
Emilie Morvant
,
Pascal Germain
ECML-PKDD
2017
PAC-Bayesian Analysis for a Two-Step Hierarchical Multiview Learning Approach
Anil Goyal
,
Emilie Morvant
,
Pascal Germain
,
Massih-Reza Amini
ICML
2016
A New PAC-Bayesian Perspective on Domain Adaptation
Pascal Germain
,
Amaury Habrard
,
François Laviolette
,
Emilie Morvant
JMLR
2016
Domain-Adversarial Training of Neural Networks
Yaroslav Ganin
,
Evgeniya Ustinova
,
Hana Ajakan
,
Pascal Germain
,
Hugo Larochelle
,
François Laviolette
,
Mario March
,
Victor Lempitsky
AISTATS
2016
PAC-Bayesian Bounds Based on the Rényi Divergence
Luc Bégin
,
Pascal Germain
,
François Laviolette
,
Jean-Francis Roy
NeurIPS
2016
PAC-Bayesian Theory Meets Bayesian Inference
Pascal Germain
,
Francis Bach
,
Alexandre Lacoste
,
Simon Lacoste-Julien
JMLR
2015
Risk Bounds for the Majority Vote: From a PAC-Bayesian Analysis to a Learning Algorithm
Pascal Germain
,
Alexandre Lacasse
,
Francois Laviolette
,
Mario March
,
Jean-Francis Roy
AISTATS
2014
PAC-Bayesian Theory for Transductive Learning
Luc Bégin
,
Pascal Germain
,
François Laviolette
,
Jean-Francis Roy
ICML
2013
A PAC-Bayesian Approach for Domain Adaptation with Specialization to Linear Classifiers
Pascal Germain
,
Amaury Habrard
,
François Laviolette
,
Emilie Morvant
ICML
2011
A PAC-Bayes Sample-Compression Approach to Kernel Methods
Pascal Germain
,
Alexandre Lacoste
,
François Laviolette
,
Mario Marchand
,
Sara Shanian
NeurIPS
2009
From PAC-Bayes Bounds to KL Regularization
Pascal Germain
,
Alexandre Lacasse
,
Mario Marchand
,
Sara Shanian
,
François Laviolette
ICML
2009
PAC-Bayesian Learning of Linear Classifiers
Pascal Germain
,
Alexandre Lacasse
,
François Laviolette
,
Mario Marchand
NeurIPS
2006
A PAC-Bayes Risk Bound for General Loss Functions
Pascal Germain
,
Alexandre Lacasse
,
François Laviolette
,
Mario Marchand
NeurIPS
2006
PAC-Bayes Bounds for the Risk of the Majority Vote and the Variance of the Gibbs Classifier
Alexandre Lacasse
,
François Laviolette
,
Mario Marchand
,
Pascal Germain
,
Nicolas Usunier