ML Anthology
Authors
Search
About
Giesen, Joachim
30 publications
AAAI
2025
Dimension Reduction for Symbolic Regression
Paul Kahlmeyer
,
Markus Fischer
,
Joachim Giesen
AAAI
2025
Discovering Symmetries of ODEs by Symbolic Regression
Paul Kahlmeyer
,
Niklas Merk
,
Joachim Giesen
NeurIPS
2025
Exploiting Dynamic Sparsity in Einsum
Christoph Staudt
,
Mark Blacher
,
Tim Hoffmann
,
Kaspar Kasche
,
Olaf Beyersdorff
,
Joachim Giesen
IJCAI
2024
Convexity Certificates for Symbolic Tensor Expressions
Paul Gerhardt Rump
,
Niklas Merk
,
Julien Klaus
,
Maurice Wenig
,
Joachim Giesen
NeurIPS
2024
Einsum Benchmark: Enabling the Development of Next-Generation Tensor Execution Engines
Mark Blacher
,
Christoph Staudt
,
Julien Klaus
,
Maurice Wenig
,
Niklas Merk
,
Alexander Breuer
,
Max Engel
,
Sören Laue
,
Joachim Giesen
AAAI
2024
Model Counting and Sampling via Semiring Extensions
Andreas Goral
,
Joachim Giesen
,
Mark Blacher
,
Christoph Staudt
,
Julien Klaus
IJCAI
2024
Scaling up Unbiased Search-Based Symbolic Regression
Paul Kahlmeyer
,
Joachim Giesen
,
Michael Habeck
,
Henrik Voigt
PGM
2024
Serving MPE Queries on Tensor Networks by Computing Derivatives
Maurice Wenig
,
Hanno Barschel
,
Joachim Giesen
,
Andreas Goral
,
Mark Blacher
AAAI
2023
Why Capsule Neural Networks Do Not Scale: Challenging the Dynamic Parse-Tree Assumption
Matthias Mitterreiter
,
Marcel Koch
,
Joachim Giesen
,
Sören Laue
NeurIPS
2022
Convexity Certificates from Hessians
Julien Klaus
,
Niklas Merk
,
Konstantin Wiedom
,
Sören Laue
,
Joachim Giesen
IJCAI
2022
Leveraging the Wikipedia Graph for Evaluating Word Embeddings
Joachim Giesen
,
Paul Kahlmeyer
,
Frank Nussbaum
,
Sina Zarrieß
AAAI
2022
Optimization for Classical Machine Learning Problems on the GPU
Sören Laue
,
Mark Blacher
,
Joachim Giesen
IJCAI
2021
Method of Moments for Topic Models with Mixed Discrete and Continuous Features
Joachim Giesen
,
Paul Kahlmeyer
,
Sören Laue
,
Matthias Mitterreiter
,
Frank Nussbaum
,
Christoph Staudt
,
Sina Zarrieß
UAI
2021
Robust Principal Component Analysis for Generalized Multi-View Models
Frank Nussbaum
,
Joachim Giesen
AAAI
2020
A Simple and Efficient Tensor Calculus
Sören Laue
,
Matthias Mitterreiter
,
Joachim Giesen
IJCAI
2020
Disentangling Direct and Indirect Interactions in Polytomous Item Response Theory Models
Frank Nussbaum
,
Joachim Giesen
AAAI
2020
GENO - Optimization for Classical Machine Learning Made Fast and Easy
Sören Laue
,
Matthias Mitterreiter
,
Joachim Giesen
IJCAI
2019
Combining ADMM and the Augmented Lagrangian Method for Efficiently Handling Many Constraints
Joachim Giesen
,
Sören Laue
IJCAI
2019
Efficient Regularization Parameter Selection for Latent Variable Graphical Models via Bi-Level Optimization
Joachim Giesen
,
Frank Nussbaum
,
Christopher Schneider
NeurIPS
2019
GENO -- GENeric Optimization for Classical Machine Learning
Soeren Laue
,
Matthias Mitterreiter
,
Joachim Giesen
ALT
2019
Ising Models with Latent Conditional Gaussian Variables
Frank Nussbaum
,
Joachim Giesen
ECML-PKDD
2019
MatrixCalculus.org - Computing Derivatives of Matrix and Tensor Expressions
Sören Laue
,
Matthias Mitterreiter
,
Joachim Giesen
AAAI
2019
Using Benson's Algorithm for Regularization Parameter Tracking
Joachim Giesen
,
Sören Laue
,
Andreas Löhne
,
Christopher Schneider
NeurIPS
2018
Computing Higher Order Derivatives of Matrix and Tensor Expressions
Soeren Laue
,
Matthias Mitterreiter
,
Joachim Giesen
ICML
2015
Tracking Approximate Solutions of Parameterized Optimization Problems over Multi-Dimensional (Hyper-)Parameter Domains
Katharina Blechschmidt
,
Joachim Giesen
,
Soeren Laue
ICML
2014
Robust and Efficient Kernel Hyperparameter Paths with Guarantees
Joachim Giesen
,
Soeren Laue
,
Patrick Wieschollek
AISTATS
2014
Sketching the Support of a Probability Measure
Joachim Giesen
,
Sören Laue
,
Lars Kuehne
NeurIPS
2012
Approximating Concavely Parameterized Optimization Problems
Joachim Giesen
,
Jens Mueller
,
Soeren Laue
,
Sascha Swiercy
AISTATS
2012
Regularization Paths with Guarantees for Convex Semidefinite Optimization
Joachim Giesen
,
Martin Jaggi
,
Soeren Laue
NeurIPS
2004
Kernel Methods for Implicit Surface Modeling
Joachim Giesen
,
Simon Spalinger
,
Bernhard Schölkopf