ML Anthology
Authors
Search
About
Gillenwater, Jennifer
13 publications
NeurIPS
2023
Better Private Linear Regression Through Better Private Feature Selection
Travis Dick
,
Jennifer Gillenwater
,
Matthew Joseph
ICML
2022
A Joint Exponential Mechanism for Differentially Private Top-$k$
Jennifer Gillenwater
,
Matthew Joseph
,
Andres Munoz
,
Monica Ribero Diaz
ICLR
2022
Scalable Sampling for Nonsymmetric Determinantal Point Processes
Insu Han
,
Mike Gartrell
,
Jennifer Gillenwater
,
Elvis Dohmatob
,
Amin Karbasi
NeurIPSW
2021
A Joint Exponential Mechanism for Differentially Private Top-K Set
Andres Munoz Medina
,
Matthew Joseph
,
Jennifer Gillenwater
,
Mónica Ribero
NeurIPSW
2021
Combining Public and Private Data
Cecilia Ferrando
,
Jennifer Gillenwater
,
Alex Kulesza
ICML
2021
Differentially Private Quantiles
Jennifer Gillenwater
,
Matthew Joseph
,
Alex Kulesza
ICLR
2021
Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms
Maruan Al-Shedivat
,
Jennifer Gillenwater
,
Eric Xing
,
Afshin Rostamizadeh
ICLR
2021
Scalable Learning and MAP Inference for Nonsymmetric Determinantal Point Processes
Mike Gartrell
,
Insu Han
,
Elvis Dohmatob
,
Jennifer Gillenwater
,
Victor-Emmanuel Brunel
AISTATS
2020
MAP Inference for Customized Determinantal Point Processes via Maximum Inner Product Search
Insu Han
,
Jennifer Gillenwater
ICML
2019
A Tree-Based Method for Fast Repeated Sampling of Determinantal Point Processes
Jennifer Gillenwater
,
Alex Kulesza
,
Zelda Mariet
,
Sergei Vassilvtiskii
NeurIPS
2012
Near-Optimal MAP Inference for Determinantal Point Processes
Jennifer Gillenwater
,
Alex Kulesza
,
Ben Taskar
JMLR
2011
Posterior Sparsity in Unsupervised Dependency Parsing
Jennifer Gillenwater
,
Kuzman Ganchev
,
João Graça
,
Fernando Pereira
,
Ben Taskar
JMLR
2010
Posterior Regularization for Structured Latent Variable Models
Kuzman Ganchev
,
João Graça
,
Jennifer Gillenwater
,
Ben Taskar