ML Anthology
Authors
Search
About
Glymour, Clark
25 publications
JMLR
2024
Generalized Independent Noise Condition for Estimating Causal Structure with Latent Variables
Feng Xie
,
Biwei Huang
,
Zhengming Chen
,
Ruichu Cai
,
Clark Glymour
,
Zhi Geng
,
Kun Zhang
ICML
2022
Action-Sufficient State Representation Learning for Control with Structural Constraints
Biwei Huang
,
Chaochao Lu
,
Liu Leqi
,
Jose Miguel Hernandez-Lobato
,
Clark Glymour
,
Bernhard Schölkopf
,
Kun Zhang
ICLRW
2022
Action-Sufficient State Representation Learning for Control with Structural Constraints
Biwei Huang
,
Chaochao Lu
,
Liu Leqi
,
José Miguel Hernández-Lobato
,
Clark Glymour
,
Bernhard Schölkopf
,
Kun Zhang
NeurIPS
2022
Latent Hierarchical Causal Structure Discovery with Rank Constraints
Biwei Huang
,
Charles Jia Han Low
,
Feng Xie
,
Clark Glymour
,
Kun Zhang
JMLR
2020
Causal Discovery from Heterogeneous/Nonstationary Data
Biwei Huang
,
Kun Zhang
,
Jiji Zhang
,
Joseph Ramsey
,
Ruben Sanchez-Romero
,
Clark Glymour
,
Bernhard Schölkopf
AAAI
2020
Causal Discovery from Multiple Data Sets with Non-Identical Variable Sets
Biwei Huang
,
Kun Zhang
,
Mingming Gong
,
Clark Glymour
ICMLW
2020
Causal Discovery in the Presence of Missing Values for Neuropathic Pain Diagnosis
Ruibo Tu
,
Kun Zhang
,
Bo Christer Bertilson
,
Clark Glymour
,
Hedvig Kjellström
,
Cheng Zhang
NeurIPS
2020
Domain Adaptation as a Problem of Inference on Graphical Models
Kun Zhang
,
Mingming Gong
,
Petar Stojanov
,
Biwei Huang
,
Qingsong Liu
,
Clark Glymour
NeurIPS
2020
Generalized Independent Noise Condition for Estimating Latent Variable Causal Graphs
Feng Xie
,
Ruichu Cai
,
Biwei Huang
,
Clark Glymour
,
Zhifeng Hao
,
Kun Zhang
ICML
2019
Causal Discovery and Forecasting in Nonstationary Environments with State-Space Models
Biwei Huang
,
Kun Zhang
,
Mingming Gong
,
Clark Glymour
NeurIPS
2019
Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering
Biwei Huang
,
Kun Zhang
,
Pengtao Xie
,
Mingming Gong
,
Eric P Xing
,
Clark Glymour
NeurIPS
2019
Triad Constraints for Learning Causal Structure of Latent Variables
Ruichu Cai
,
Feng Xie
,
Clark Glymour
,
Zhifeng Hao
,
Kun Zhang
UAI
2018
Causal Discovery with Linear Non-Gaussian Models Under Measurement Error: Structural Identifiability Results
Kun Zhang
,
Mingming Gong
,
Joseph D. Ramsey
,
Kayhan Batmanghelich
,
Peter Spirtes
,
Clark Glymour
IJCAI
2017
Causal Discovery from Nonstationary/Heterogeneous Data: Skeleton Estimation and Orientation Determination
Kun Zhang
,
Biwei Huang
,
Jiji Zhang
,
Clark Glymour
,
Bernhard Schölkopf
UAI
2017
Causal Discovery from Temporally Aggregated Time Series
Mingming Gong
,
Kun Zhang
,
Bernhard Schölkopf
,
Clark Glymour
,
Dacheng Tao
ICML
2016
Domain Adaptation with Conditional Transferable Components
Mingming Gong
,
Kun Zhang
,
Tongliang Liu
,
Dacheng Tao
,
Clark Glymour
,
Bernhard Schölkopf
UAI
2016
On the Identifiability and Estimation of Functional Causal Models in the Presence of Outcome-Dependent Selection
Kun Zhang
,
Jiji Zhang
,
Biwei Huang
,
Bernhard Schölkopf
,
Clark Glymour
NeurIPS
2008
Integrating Locally Learned Causal Structures with Overlapping Variables
David Danks
,
Clark Glymour
,
Robert E. Tillman
JMLR
2008
Search for Additive Nonlinear Time Series Causal Models
Tianjiao Chu
,
Clark Glymour
JMLR
2006
Learning the Structure of Linear Latent Variable Models
Ricardo Silva
,
Richard Scheine
,
Clark Glymour
,
Peter Spirtes
UAI
2005
On the Number of Experiments Sufficient and in the Worst Case Necessary to Identify All Causal Relations Among N Variables
Frederick Eberhardt
,
Clark Glymour
,
Richard Scheines
UAI
2003
Learning Measurement Models for Unobserved Variables
Ricardo Bezerra de Andrade e Silva
,
Richard Scheines
,
Clark Glymour
,
Peter Spirtes
UAI
2001
Linearity Properties of Bayes Nets with Binary Variables
David Danks
,
Clark Glymour
UAI
1998
Psychological and Normative Theories of Causal Power and the Probabilities of Causes
Clark Glymour
AISTATS
1997
A Note on Cyclic Graphs and Dynamical Feedback Systems
Thomas S. Richardson
,
Peter Spirtes
,
Clark Glymour