Goel, Surbhi

45 publications

COLT 2025 A Theory of Learning with Autoregressive Chain of Thought Nirmit Joshi, Gal Vardi, Adam Block, Surbhi Goel, Zhiyuan Li, Theodor Misiakiewicz, Nathan Srebro
ICLR 2025 Conformal Language Model Reasoning with Coherent Factuality Maxon Rubin-Toles, Maya Gambhir, Keshav Ramji, Aaron Roth, Surbhi Goel
ICLR 2025 Logicbreaks: A Framework for Understanding Subversion of Rule-Based Inference Anton Xue, Avishree Khare, Rajeev Alur, Surbhi Goel, Eric Wong
NeurIPS 2025 Probabilistic Stability Guarantees for Feature Attributions Helen Jin, Anton Xue, Weiqiu You, Surbhi Goel, Eric Wong
ICLR 2025 Progressive Distillation Induces an Implicit Curriculum Abhishek Panigrahi, Bingbin Liu, Sadhika Malladi, Andrej Risteski, Surbhi Goel
ICML 2024 Complexity Matters: Feature Learning in the Presence of Spurious Correlations Guanwen Qiu, Da Kuang, Surbhi Goel
NeurIPSW 2024 Logicbreaks: A Framework for Understanding Subversion of Rule-Based Inference Anton Xue, Avishree Khare, Rajeev Alur, Surbhi Goel, Eric Wong
NeurIPSW 2024 Logicbreaks: A Framework for Understanding Subversion of Rule-Based Inference Anton Xue, Avishree Khare, Rajeev Alur, Surbhi Goel, Eric Wong
ICMLW 2024 Progressive Distillation Improves Feature Learning via Implicit Curriculum Abhishek Panigrahi, Bingbin Liu, Sadhika Malladi, Andrej Risteski, Surbhi Goel
ICMLW 2024 Progressive Distillation Improves Feature Learning via Implicit Curriculum Abhishek Panigrahi, Bingbin Liu, Sadhika Malladi, Andrej Risteski, Surbhi Goel
NeurIPSW 2024 Progressive Distillation Induces an Implicit Curriculum Abhishek Panigrahi, Bingbin Liu, Sadhika Malladi, Andrej Risteski, Surbhi Goel
ICML 2024 Stochastic Bandits with ReLU Neural Networks Kan Xu, Hamsa Bastani, Surbhi Goel, Osbert Bastani
NeurIPS 2024 The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains Ezra Edelman, Nikolaos Tsilivis, Benjamin L. Edelman, Eran Malach, Surbhi Goel
NeurIPSW 2024 The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains Ezra Edelman, Nikolaos Tsilivis, Surbhi Goel, Benjamin L. Edelman, Eran Malach
NeurIPS 2024 Tolerant Algorithms for Learning with Arbitrary Covariate Shift Surbhi Goel, Abhishek Shetty, Konstantinos Stavropoulos, Arsen Vasilyan
NeurIPSW 2024 Tractable Agreement Protocols Natalie Collina, Surbhi Goel, Varun Gupta, Aaron Roth
NeurIPS 2023 Adversarial Resilience in Sequential Prediction via Abstention Surbhi Goel, Steve Hanneke, Shay Moran, Abhishek Shetty
NeurIPSW 2023 Complexity Matters: Dynamics of Feature Learning in the Presence of Spurious Correlations GuanWen Qiu, Da Kuang, Surbhi Goel
NeurIPS 2023 Exposing Attention Glitches with Flip-Flop Language Modeling Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang
ICMLW 2023 Exposing Attention Glitches with Flip-Flop Language Modeling Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang
COLT 2023 Learning Narrow One-Hidden-Layer ReLU Networks Sitan Chen, Zehao Dou, Surbhi Goel, Adam Klivans, Raghu Meka
NeurIPS 2023 Pareto Frontiers in Deep Feature Learning: Data, Compute, Width, and Luck Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang
ICLR 2023 Transformers Learn Shortcuts to Automata Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, Cyril Zhang
AISTATS 2022 Investigating the Role of Negatives in Contrastive Representation Learning Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, Dipendra Misra
ICLR 2022 Anti-Concentrated Confidence Bonuses for Scalable Exploration Jordan T. Ash, Cyril Zhang, Surbhi Goel, Akshay Krishnamurthy, Sham M. Kakade
NeurIPS 2022 Hidden Progress in Deep Learning: SGD Learns Parities near the Computational Limit Boaz Barak, Benjamin Edelman, Surbhi Goel, Sham Kakade, Eran Malach, Cyril Zhang
ICML 2022 Inductive Biases and Variable Creation in Self-Attention Mechanisms Benjamin L Edelman, Surbhi Goel, Sham Kakade, Cyril Zhang
NeurIPS 2022 Recurrent Convolutional Neural Networks Learn Succinct Learning Algorithms Surbhi Goel, Sham Kakade, Adam Kalai, Cyril Zhang
ICML 2022 Understanding Contrastive Learning Requires Incorporating Inductive Biases Nikunj Saunshi, Jordan Ash, Surbhi Goel, Dipendra Misra, Cyril Zhang, Sanjeev Arora, Sham Kakade, Akshay Krishnamurthy
ICML 2021 Acceleration via Fractal Learning Rate Schedules Naman Agarwal, Surbhi Goel, Cyril Zhang
NeurIPS 2021 Gone Fishing: Neural Active Learning with Fisher Embeddings Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, Sham Kakade
ICML 2021 Statistical Estimation from Dependent Data Vardis Kandiros, Yuval Dagan, Nishanth Dikkala, Surbhi Goel, Constantinos Daskalakis
COLT 2020 Approximation Schemes for ReLU Regression Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R. Klivans, Mahdi Soltanolkotabi
ICML 2020 Efficiently Learning Adversarially Robust Halfspaces with Noise Omar Montasser, Surbhi Goel, Ilias Diakonikolas, Nathan Srebro
NeurIPS 2020 From Boltzmann Machines to Neural Networks and Back Again Surbhi Goel, Adam Klivans, Frederic Koehler
AISTATS 2020 Learning Ising and Potts Models with Latent Variables Surbhi Goel
ICML 2020 Learning Mixtures of Graphs from Epidemic Cascades Jessica Hoffmann, Soumya Basu, Surbhi Goel, Constantine Caramanis
NeurIPS 2020 Statistical-Query Lower Bounds via Functional Gradients Surbhi Goel, Aravind Gollakota, Adam Klivans
ICML 2020 Superpolynomial Lower Bounds for Learning One-Layer Neural Networks Using Gradient Descent Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, Adam Klivans
COLT 2019 Learning Ising Models with Independent Failures Surbhi Goel, Daniel M. Kane, Adam R. Klivans
COLT 2019 Learning Neural Networks with Two Nonlinear Layers in Polynomial Time Surbhi Goel, Adam R. Klivans
NeurIPS 2019 Time/Accuracy Tradeoffs for Learning a ReLU with Respect to Gaussian Marginals Surbhi Goel, Sushrut Karmalkar, Adam Klivans
ICML 2018 Learning One Convolutional Layer with Overlapping Patches Surbhi Goel, Adam Klivans, Raghu Meka
NeurIPS 2017 Eigenvalue Decay Implies Polynomial-Time Learnability for Neural Networks Surbhi Goel, Adam Klivans
COLT 2017 Reliably Learning the ReLU in Polynomial Time Surbhi Goel, Varun Kanade, Adam Klivans, Justin Thaler