Gong, Chen

64 publications

ICLRW 2025 Benchmarking Differentially Private Tabular Data Synthesis Algorithms Kai Chen, Xiaochen Li, Chen Gong, Ryan McKenna, Tianhao Wang
TMLR 2025 Beyond Instance Consistency: Investigating View Diversity in Self-Supervised Learning Huaiyuan Qin, Muli Yang, Siyuan Hu, Peng Hu, Yu Zhang, Chen Gong, Hongyuan Zhu
ICLR 2025 BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, Simon Brunner, Chen Gong, James Hoang, Armel Randy Zebaze, Xiaoheng Hong, Wen-Ding Li, Jean Kaddour, Ming Xu, Zhihan Zhang, Prateek Yadav, Naman Jain, Alex Gu, Zhoujun Cheng, Jiawei Liu, Qian Liu, Zijian Wang, Binyuan Hui, Niklas Muennighoff, David Lo, Daniel Fried, Xiaoning Du, Harm de Vries, Leandro Von Werra
CVPR 2025 DynPose: Largely Improving the Efficiency of Human Pose Estimation by a Simple Dynamic Framework Yalong Xu, Lin Zhao, Chen Gong, Guangyu Li, Di Wang, Nannan Wang
CVPR 2025 DynRefer: Delving into Region-Level Multimodal Tasks via Dynamic Resolution Yuzhong Zhao, Feng Liu, Yue Liu, Mingxiang Liao, Chen Gong, Qixiang Ye, Fang Wan
NeurIPS 2025 GFM-RAG: Graph Foundation Model for Retrieval Augmented Generation Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Dinh Phung, Chen Gong, Shirui Pan
ICML 2025 Graph-Constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models Linhao Luo, Zicheng Zhao, Gholamreza Haffari, Yuan-Fang Li, Chen Gong, Shirui Pan
AAAI 2025 Hybrid Data-Free Knowledge Distillation Jialiang Tang, Shuo Chen, Chen Gong
CVPR 2025 Mind the Gap: Confidence Discrepancy Can Guide Federated Semi-Supervised Learning Across Pseudo-Mismatch Yijie Liu, Xinyi Shang, Yiqun Zhang, Yang Lu, Chen Gong, Jing-Hao Xue, Hanzi Wang
AAAI 2025 Modeling Inter-Intra Heterogeneity for Graph Federated Learning Wentao Yu, Shuo Chen, Yongxin Tong, Tianlong Gu, Chen Gong
AAAI 2025 Pre-Training a Density-Aware Pose Transformer for Robust LiDAR-Based 3D Human Pose Estimation Xiaoqi An, Lin Zhao, Chen Gong, Jun Li, Jian Yang
AAAI 2025 Provable Discriminative Hyperspherical Embedding for Out-of-Distribution Detection Zhipeng Zou, Sheng Wan, Guangyu Li, Bo Han, Tongliang Liu, Lin Zhao, Chen Gong
ICML 2025 Volume-Aware Distance for Robust Similarity Learning Shuo Chen, Chen Gong, Jun Li, Jian Yang
ECCV 2024 ControlCap: Controllable Region-Level Captioning Yuzhong Zhao, Liu Yue, Zonghao Guo, Weijia Wu, Chen Gong, Qixiang Ye, Fang Wan
ECCV 2024 Direct Distillation Between Different Domains Jialiang Tang, Shuo Chen, Gang Niu, Hongyuan Zhu, Joey Tianyi Zhou, Chen Gong, Masashi Sugiyama
MLJ 2024 Exploiting Counter-Examples for Active Learning with Partial Labels Fei Zhang, Yunjie Ye, Lei Feng, Zhongwen Rao, Jieming Zhu, Marcus Kalander, Chen Gong, Jianye Hao, Bo Han
ICLR 2024 Robust Similarity Learning with Difference Alignment Regularization Shuo Chen, Gang Niu, Chen Gong, Okan Koc, Jian Yang, Masashi Sugiyama
AAAI 2024 SHaRPose: Sparse High-Resolution Representation for Human Pose Estimation Xiaoqi An, Lin Zhao, Chen Gong, Nannan Wang, Di Wang, Jian Yang
IJCAI 2023 A Hierarchical Approach to Population Training for Human-AI Collaboration Yi Loo, Chen Gong, Malika Meghjani
MLJ 2023 Boundary-Restricted Metric Learning Shuo Chen, Chen Gong, Xiang Li, Jian Yang, Gang Niu, Masashi Sugiyama
ICCV 2023 Combating Noisy Labels with Sample Selection by Mining High-Discrepancy Examples Xiaobo Xia, Bo Han, Yibing Zhan, Jun Yu, Mingming Gong, Chen Gong, Tongliang Liu
ICCV 2023 Distribution Shift Matters for Knowledge Distillation with Webly Collected Images Jialiang Tang, Shuo Chen, Gang Niu, Masashi Sugiyama, Chen Gong
ICLR 2023 Harnessing Out-of-Distribution Examples via Augmenting Content and Style Zhuo Huang, Xiaobo Xia, Li Shen, Bo Han, Mingming Gong, Chen Gong, Tongliang Liu
TMLR 2023 KRADA: Known-Region-Aware Domain Alignment for Open-Set Domain Adaptation in Semantic Segmentation Chenhong Zhou, Feng Liu, Chen Gong, Rongfei Zeng, Tongliang Liu, William Cheung, Bo Han
NeurIPS 2023 Keep Various Trajectories: Promoting Exploration of Ensemble Policies in Continuous Control Chao Li, Chen Gong, Qiang He, Xinwen Hou
CVPR 2023 Robust Generalization Against Photon-Limited Corruptions via Worst-Case Sharpness Minimization Zhuo Huang, Miaoxi Zhu, Xiaobo Xia, Li Shen, Jun Yu, Chen Gong, Bo Han, Bo Du, Tongliang Liu
ECML-PKDD 2023 Towards Few-Shot Inductive Link Prediction on Knowledge Graphs: A Relational Anonymous Walk-Guided Neural Process Approach Zicheng Zhao, Linhao Luo, Shirui Pan, Quoc Viet Hung Nguyen, Chen Gong
NeurIPS 2022 Learning Contrastive Embedding in Low-Dimensional Space Shuo Chen, Chen Gong, Jun Li, Jian Yang, Gang Niu, Masashi Sugiyama
ICMLW 2022 MEPG: A Minimalist Ensemble Policy Gradient Framework for Deep Reinforcement Learning Qiang He, Huangyuan Su, Chen Gong, Xinwen Hou
MLJ 2022 Towards Harnessing Feature Embedding for Robust Learning with Noisy Labels Chuang Zhang, Li Shen, Jian Yang, Chen Gong
ICML 2022 Understanding Robust Overfitting of Adversarial Training and Beyond Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, Tongliang Liu
NeurIPS 2022 Watermarking for Out-of-Distribution Detection Qizhou Wang, Feng Liu, Yonggang Zhang, Jing Zhang, Chen Gong, Tongliang Liu, Bo Han
NeurIPS 2021 Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels Sheng Wan, Yibing Zhan, Liu Liu, Baosheng Yu, Shirui Pan, Chen Gong
AAAI 2021 Contrastive and Generative Graph Convolutional Networks for Graph-Based Semi-Supervised Learning Sheng Wan, Shirui Pan, Jian Yang, Chen Gong
ICML 2021 Large-Margin Contrastive Learning with Distance Polarization Regularizer Shuo Chen, Gang Niu, Chen Gong, Jun Li, Jian Yang, Masashi Sugiyama
AAAI 2021 Learning with Group Noise Qizhou Wang, Jiangchao Yao, Chen Gong, Tongliang Liu, Mingming Gong, Hongxia Yang, Bo Han
IJCAI 2021 Multi-Scale Contrastive Siamese Networks for Self-Supervised Graph Representation Learning Ming Jin, Yizhen Zheng, Yuan-Fang Li, Chen Gong, Chuan Zhou, Shirui Pan
NeurIPS 2021 Probabilistic Margins for Instance Reweighting in Adversarial Training Qizhou Wang, Feng Liu, Bo Han, Tongliang Liu, Chen Gong, Gang Niu, Mingyuan Zhou, Masashi Sugiyama
ICLR 2021 Robust Early-Learning: Hindering the Memorization of Noisy Labels Xiaobo Xia, Tongliang Liu, Bo Han, Chen Gong, Nannan Wang, Zongyuan Ge, Yi Chang
AAAI 2021 Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model Qizhou Wang, Bo Han, Tongliang Liu, Gang Niu, Jian Yang, Chen Gong
NeurIPS 2021 Universal Semi-Supervised Learning Zhuo Huang, Chao Xue, Bo Han, Jian Yang, Chen Gong
IJCAI 2020 A Bi-Level Formulation for Label Noise Learning with Spectral Cluster Discovery Yijing Luo, Bo Han, Chen Gong
AAAI 2020 Deep Discriminative CNN with Temporal Ensembling for Ambiguously-Labeled Image Classification Yao Yao, Jiehui Deng, Xiuhua Chen, Chen Gong, Jianxin Wu, Jian Yang
JMLR 2020 Learning Data-Adaptive Non-Parametric Kernels Fanghui Liu, Xiaolin Huang, Chen Gong, Jie Yang, Li Li
ECML-PKDD 2020 Network Cooperation with Progressive Disambiguation for Partial Label Learning Yao Yao, Chen Gong, Jiehui Deng, Jian Yang
IJCAI 2020 Online Positive and Unlabeled Learning Chuang Zhang, Chen Gong, Tengfei Liu, Xun Lu, Weiqiang Wang, Jian Yang
IJCAI 2020 Reasoning like Human: Hierarchical Reinforcement Learning for Knowledge Graph Reasoning Guojia Wan, Shirui Pan, Chen Gong, Chuan Zhou, Gholamreza Haffari
ICML 2020 Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen Gong, Kewei Chen, Zhangyang Wang
NeurIPS 2019 Are Anchor Points Really Indispensable in Label-Noise Learning? Xiaobo Xia, Tongliang Liu, Nannan Wang, Bo Han, Chen Gong, Gang Niu, Masashi Sugiyama
NeurIPS 2019 Curvilinear Distance Metric Learning Shuo Chen, Lei Luo, Jian Yang, Chen Gong, Jun Li, Heng Huang
AAAI 2019 Data-Adaptive Metric Learning with Scale Alignment Shuo Chen, Chen Gong, Jian Yang, Ying Tai, Le Hui, Jun Li
AAAI 2019 Inter-Class Angular Loss for Convolutional Neural Networks Le Hui, Xiang Li, Chen Gong, Meng Fang, Joey Tianyi Zhou, Jian Yang
IJCAI 2019 Positive and Unlabeled Learning with Label Disambiguation Chuang Zhang, Dexin Ren, Tongliang Liu, Jian Yang, Chen Gong
IJCAI 2018 Adversarial Metric Learning Shuo Chen, Chen Gong, Jian Yang, Xiang Li, Yang Wei, Jun Li
AAAI 2018 Nonlinear Pairwise Layer and Its Training for Kernel Learning Fanghui Liu, Xiaolin Huang, Chen Gong, Jie Yang, Li Li
IJCAI 2018 Positive and Unlabeled Learning via Loss Decomposition and Centroid Estimation Hong Shi, Shaojun Pan, Jian Yang, Chen Gong
IJCAI 2018 Teaching Semi-Supervised Classifier via Generalized Distillation Chen Gong, Xiaojun Chang, Meng Fang, Jian Yang
AAAI 2017 Exploring Commonality and Individuality for Multi-Modal Curriculum Learning Chen Gong
IJCAI 2017 Importance-Aware Semantic Segmentation for Autonomous Driving System Bike Chen, Chen Gong, Jian Yang
IJCAI 2016 Online Multi-Object Tracking by Quadratic Pseudo-Boolean Optimization Long Lan, Dacheng Tao, Chen Gong, Naiyang Guan, Zhigang Luo
AAAI 2016 Teaching-to-Learn and Learning-to-Teach for Multi-Label Propagation Chen Gong, Dacheng Tao, Jie Yang, Wei Liu
CVPR 2015 Saliency Propagation from Simple to Difficult Chen Gong, Dacheng Tao, Wei Liu, Stephen J. Maybank, Meng Fang, Keren Fu, Jie Yang
AAAI 2014 ReLISH: Reliable Label Inference via Smoothness Hypothesis Chen Gong, Dacheng Tao, Keren Fu, Jie Yang
AAAI 2014 Signed Laplacian Embedding for Supervised Dimension Reduction Chen Gong, Dacheng Tao, Jie Yang, Keren Fu