ML Anthology
Authors
Search
About
Gottesman, Omer
18 publications
ICLR
2025
Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces
Saket Tiwari
,
Omer Gottesman
,
George Konidaris
MLHC
2024
Decision-Focused Model-Based Reinforcement Learning for Reward Transfer
Abhishek Sharma
,
Sonali Parbhoo
,
Omer Gottesman
,
Finale Doshi-Velez
NeurIPS
2024
Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy
Cameron Allen
,
Aaron Kirtland
,
Ruo Yu Tao
,
Sam Lobel
,
Daniel Scott
,
Nicholas Petrocelli
,
Omer Gottesman
,
Ronald Parr
,
Michael L. Littman
,
George Konidaris
ICMLW
2024
Mitigating Partial Observability in Sequential Decision Processes via the Lambda Discrepancy
Cameron Allen
,
Aaron T. Kirtland
,
Ruo Yu Tao
,
Sam Lobel
,
Daniel Scott
,
Nicholas Petrocelli
,
Omer Gottesman
,
Ronald Parr
,
Michael Littman
,
George Konidaris
AISTATS
2023
Coarse-Grained Smoothness for Reinforcement Learning in Metric Spaces
Omer Gottesman
,
Kavosh Asadi
,
Cameron S. Allen
,
Samuel Lobel
,
George Konidaris
,
Michael Littman
NeurIPS
2023
Effectively Learning Initiation Sets in Hierarchical Reinforcement Learning
Akhil Bagaria
,
Ben Abbatematteo
,
Omer Gottesman
,
Matt Corsaro
,
Sreehari Rammohan
,
George Konidaris
ICLR
2023
Performance Bounds for Model and Policy Transfer in Hidden-Parameter MDPs
Haotian Fu
,
Jiayu Yao
,
Omer Gottesman
,
Finale Doshi-Velez
,
George Konidaris
NeurIPS
2023
TD Convergence: An Optimization Perspective
Kavosh Asadi
,
Shoham Sabach
,
Yao Liu
,
Omer Gottesman
,
Rasool Fakoor
NeurIPS
2022
Faster Deep Reinforcement Learning with Slower Online Network
Kavosh Asadi
,
Rasool Fakoor
,
Omer Gottesman
,
Taesup Kim
,
Michael L. Littman
,
Alexander J Smola
CHIL
2022
Identification of Subgroups with Similar Benefits in Off-Policy Policy Evaluation
Ramtin Keramati
,
Omer Gottesman
,
Leo Anthony Celi
,
Finale Doshi-Velez
,
Emma Brunskill
AAAI
2022
Optimistic Initialization for Exploration in Continuous Control
Sam Lobel
,
Omer Gottesman
,
Cameron Allen
,
Akhil Bagaria
,
George Konidaris
NeurIPS
2021
Learning Markov State Abstractions for Deep Reinforcement Learning
Cameron Allen
,
Neev Parikh
,
Omer Gottesman
,
George Konidaris
ICML
2021
State Relevance for Off-Policy Evaluation
Simon P Shen
,
Yecheng Ma
,
Omer Gottesman
,
Finale Doshi-Velez
ICML
2020
Interpretable Off-Policy Evaluation in Reinforcement Learning by Highlighting Influential Transitions
Omer Gottesman
,
Joseph Futoma
,
Yao Liu
,
Sonali Parbhoo
,
Leo Celi
,
Emma Brunskill
,
Finale Doshi-Velez
NeurIPS
2020
Learning to Search Efficiently for Causally Near-Optimal Treatments
Samuel HÃ¥kansson
,
Viktor Lindblom
,
Omer Gottesman
,
Fredrik D Johansson
ICML
2019
Combining Parametric and Nonparametric Models for Off-Policy Evaluation
Omer Gottesman
,
Yao Liu
,
Scott Sussex
,
Emma Brunskill
,
Finale Doshi-Velez
NeurIPS
2018
Representation Balancing MDPs for Off-Policy Policy Evaluation
Yao Liu
,
Omer Gottesman
,
Aniruddh Raghu
,
Matthieu Komorowski
,
Aldo A Faisal
,
Finale Doshi-Velez
,
Emma Brunskill
AISTATS
2018
Weighted Tensor Decomposition for Learning Latent Variables with Partial Data
Omer Gottesman
,
Weiwei Pan
,
Finale Doshi-Velez