ML Anthology
Authors
Search
About
Grathwohl, Will
10 publications
NeurIPS
2023
DISCS: A Benchmark for Discrete Sampling
Katayoon Goshvadi
,
Haoran Sun
,
Xingchao Liu
,
Azade Nova
,
Ruqi Zhang
,
Will Grathwohl
,
Dale Schuurmans
,
Hanjun Dai
NeurIPS
2022
Learning to Navigate Wikipedia by Taking Random Walks
Manzil Zaheer
,
Kenneth Marino
,
Will Grathwohl
,
John Schultz
,
Wendy Shang
,
Sheila Babayan
,
Arun Ahuja
,
Ishita Dasgupta
,
Christine Kaeser-Chen
,
Rob Fergus
NeurIPS
2022
Score-Based Diffusion Meets Annealed Importance Sampling
Arnaud Doucet
,
Will Grathwohl
,
Alexander G Matthews
,
Heiko Strathmann
ICML
2021
Oops I Took a Gradient: Scalable Sampling for Discrete Distributions
Will Grathwohl
,
Kevin Swersky
,
Milad Hashemi
,
David Duvenaud
,
Chris Maddison
ICML
2020
Learning the Stein Discrepancy for Training and Evaluating Energy-Based Models Without Sampling
Will Grathwohl
,
Kuan-Chieh Wang
,
Joern-Henrik Jacobsen
,
David Duvenaud
,
Richard Zemel
ICLR
2020
Understanding the Limitations of Conditional Generative Models
Ethan Fetaya
,
Jörn-Henrik Jacobsen
,
Will Grathwohl
,
Richard Zemel
ICLR
2020
Your Classifier Is Secretly an Energy Based Model and You Should Treat It like One
Will Grathwohl
,
Kuan-Chieh Wang
,
Jörn-Henrik Jacobsen
,
David Duvenaud
,
Mohammad Norouzi
,
Kevin Swersky
ICLR
2019
FFJORD: Free-Form Continuous Dynamics for Scalable Reversible Generative Models
Will Grathwohl
,
Ricky T. Q. Chen
,
Jesse Bettencourt
,
Ilya Sutskever
,
David Duvenaud
ICML
2019
Invertible Residual Networks
Jens Behrmann
,
Will Grathwohl
,
Ricky T. Q. Chen
,
David Duvenaud
,
Joern-Henrik Jacobsen
ICLR
2018
Backpropagation Through the Void: Optimizing Control Variates for Black-Box Gradient Estimation
Will Grathwohl
,
Dami Choi
,
Yuhuai Wu
,
Geoff Roeder
,
David Duvenaud