Gribonval, Remi

25 publications

ICML 2025 A Rescaling-Invariant Lipschitz Bound Based on Path-Metrics for Modern ReLU Network Parameterizations Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, Rémi Gribonval
MLJ 2025 Pasco (PArallel Structured COarsening): An Overlay to Speed up Graph Clustering Algorithms Etienne Lasalle, Rémi Vaudaine, Titouan Vayer, Pierre Borgnat, Paulo Gonçalves, Rémi Gribonval, Márton Karsai
ICML 2025 Transformative or Conservative? Conservation Laws for ResNets and Transformers Sibylle Marcotte, Rémi Gribonval, Gabriel Peyré
ICLR 2024 A Path-Norm Toolkit for Modern Networks: Consequences, Promises and Challenges Antoine Gonon, Nicolas Brisebarre, Elisa Riccietti, Rémi Gribonval
ICML 2024 Keep the Momentum: Conservation Laws Beyond Euclidean Gradient Flows Sibylle Marcotte, Rémi Gribonval, Gabriel Peyré
JMLR 2024 Revisiting RIP Guarantees for Sketching Operators on Mixture Models Ayoub Belhadji, Rémi Gribonval
TMLR 2024 Sketch and Shift: A Robust Decoder for Compressive Clustering Ayoub Belhadji, Rémi Gribonval
NeurIPS 2023 Abide by the Law and Follow the Flow: Conservation Laws for Gradient Flows Sibylle Marcotte, Remi Gribonval, Gabriel Peyré
TMLR 2023 About the Cost of Central Privacy in Density Estimation Clément Lalanne, Aurélien Garivier, Rémi Gribonval
JMLR 2023 Controlling Wasserstein Distances by Kernel Norms with Application to Compressive Statistical Learning Titouan Vayer, Rémi Gribonval
NeurIPS 2023 Does a Sparse ReLU Network Training Problem Always Admit an Optimum ? Tung Le, Remi Gribonval, Elisa Riccietti
TMLR 2023 On the Statistical Complexity of Estimation and Testing Under Privacy Constraints Clément Lalanne, Aurélien Garivier, Rémi Gribonval
ICML 2023 Private Statistical Estimation of Many Quantiles Clément Lalanne, Aurélien Garivier, Rémi Gribonval
ICLR 2023 Self-Supervised Learning with Rotation-Invariant Kernels Léon Zheng, Gilles Puy, Elisa Riccietti, Patrick Perez, Rémi Gribonval
ICLR 2021 Training with Quantization Noise for Extreme Model Compression Pierre Stock, Angela Fan, Benjamin Graham, Edouard Grave, Rémi Gribonval, Herve Jegou, Armand Joulin
ICLR 2020 And the Bit Goes Down: Revisiting the Quantization of Neural Networks Pierre Stock, Armand Joulin, Rémi Gribonval, Benjamin Graham, Hervé Jégou
ECML-PKDD 2020 Graph Diffusion Wasserstein Distances Amélie Barbe, Marc Sebban, Paulo Gonçalves, Pierre Borgnat, Rémi Gribonval
AISTATS 2020 Learning with Minibatch Wasserstein : Asymptotic and Gradient Properties Kilian Fatras, Younes Zine, Rémi Flamary, Remi Gribonval, Nicolas Courty
NeurIPS 2019 Don't Take It Lightly: Phasing Optical Random Projections with Unknown Operators Sidharth Gupta, Remi Gribonval, Laurent Daudet, Ivan Dokmanić
ICLR 2019 Equi-Normalization of Neural Networks Pierre Stock, Benjamin Graham, Rémi Gribonval, Hervé Jégou
NeurIPS 2018 MULAN: A Blind and Off-Grid Method for Multichannel Echo Retrieval Helena Peic Tukuljac, Antoine Deleforge, Remi Gribonval
ICCV 2017 SUBIC: A Supervised, Structured Binary Code for Image Search Himalaya Jain, Joaquin Zepeda, Patrick Perez, Remi Gribonval
ECCV 2016 Approximate Search with Quantized Sparse Representations Himalaya Jain, Patrick Pérez, Rémi Gribonval, Joaquin Zepeda, Hervé Jégou
ICML 2016 Compressive Spectral Clustering Nicolas Tremblay, Gilles Puy, Remi Gribonval, Pierre Vandergheynst
NeurIPS 2013 Reconciling "priors" & "priors" Without Prejudice? Remi Gribonval, Pierre Machart