ML Anthology
Authors
Search
About
Grosse, Roger
23 publications
NeurIPS
2024
Connecting the Dots: LLMs Can Infer and Verbalize Latent Structure from Disparate Training Data
Johannes Treutlein
,
Dami Choi
,
Jan Betley
,
Sam Marks
,
Cem Anil
,
Roger Grosse
,
Owain Evans
NeurIPS
2024
Training Data Attribution via Approximate Unrolling
Juhan Bae
,
Wu Lin
,
Jonathan Lorraine
,
Roger Grosse
AISTATS
2021
Beyond Marginal Uncertainty: How Accurately Can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
,
Shengyang Sun
,
Roger Grosse
AISTATS
2021
Understanding and Mitigating Exploding Inverses in Invertible Neural Networks
Jens Behrmann
,
Paul Vicol
,
Kuan-Chieh Wang
,
Roger Grosse
,
Joern-Henrik Jacobsen
JMLR
2021
A Unified Analysis of First-Order Methods for Smooth Games via Integral Quadratic Constraints
Guodong Zhang
,
Xuchan Bao
,
Laurent Lessard
,
Roger Grosse
ICML
2020
Evaluating Lossy Compression Rates of Deep Generative Models
Sicong Huang
,
Alireza Makhzani
,
Yanshuai Cao
,
Roger Grosse
ICLR
2020
Picking Winning Tickets Before Training by Preserving Gradient Flow
Chaoqi Wang
,
Guodong Zhang
,
Roger Grosse
ICLR
2019
Aggregated Momentum: Stability Through Passive Damping
James Lucas
,
Shengyang Sun
,
Richard Zemel
,
Roger Grosse
ICML
2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
,
Roger Grosse
,
Sanja Fidler
,
Guodong Zhang
ICLR
2019
Functional Variational Bayesian Neural Networks
Shengyang Sun
,
Guodong Zhang
,
Jiaxin Shi
,
Roger Grosse
ICLR
2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters Using Structured Best-Response Functions
Matthew Mackay
,
Paul Vicol
,
Jonathan Lorraine
,
David Duvenaud
,
Roger Grosse
ICML
2019
Sorting Out Lipschitz Function Approximation
Cem Anil
,
James Lucas
,
Roger Grosse
ICLR
2019
Three Mechanisms of Weight Decay Regularization
Guodong Zhang
,
Chaoqi Wang
,
Bowen Xu
,
Roger Grosse
ICLRW
2019
Understanding Posterior Collapse in Generative Latent Variable Models
James Lucas
,
George Tucker
,
Roger Grosse
,
Mohammad Norouzi
ICML
2018
Adversarial Distillation of Bayesian Neural Network Posteriors
Kuan-Chieh Wang
,
Paul Vicol
,
James Lucas
,
Li Gu
,
Roger Grosse
,
Richard Zemel
ICML
2018
Differentiable Compositional Kernel Learning for Gaussian Processes
Shengyang Sun
,
Guodong Zhang
,
Chaoqi Wang
,
Wenyuan Zeng
,
Jiaman Li
,
Roger Grosse
ICLR
2018
Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches
Yeming Wen
,
Paul Vicol
,
Jimmy Ba
,
Dustin Tran
,
Roger Grosse
ICML
2018
Noisy Natural Gradient as Variational Inference
Guodong Zhang
,
Shengyang Sun
,
David Duvenaud
,
Roger Grosse
ICLR
2018
Understanding Short-Horizon Bias in Stochastic Meta-Optimization
Yuhuai Wu
,
Mengye Ren
,
Renjie Liao
,
Roger Grosse.
ICML
2016
A Kronecker-Factored Approximate Fisher Matrix for Convolution Layers
Roger Grosse
,
James Martens
ICML
2015
Optimizing Neural Networks with Kronecker-Factored Approximate Curvature
James Martens
,
Roger Grosse
ICML
2015
Scaling up Natural Gradient by Sparsely Factorizing the Inverse Fisher Matrix
Roger Grosse
,
Ruslan Salakhudinov
ICML
2013
Structure Discovery in Nonparametric Regression Through Compositional Kernel Search
David Duvenaud
,
James Lloyd
,
Roger Grosse
,
Joshua Tenenbaum
,
Ghahramani Zoubin