Gruslys, Audrunas

6 publications

ICML 2023 Quantile Credit Assignment Thomas Mesnard, Wenqi Chen, Alaa Saade, Yunhao Tang, Mark Rowland, Theophane Weber, Clare Lyle, Audrunas Gruslys, Michal Valko, Will Dabney, Georg Ostrovski, Eric Moulines, Remi Munos
ICML 2020 Fast Computation of Nash Equilibria in Imperfect Information Games Remi Munos, Julien Perolat, Jean-Baptiste Lespiau, Mark Rowland, Bart De Vylder, Marc Lanctot, Finbarr Timbers, Daniel Hennes, Shayegan Omidshafiei, Audrunas Gruslys, Mohammad Gheshlaghi Azar, Edward Lockhart, Karl Tuyls
AAAI 2018 Deep Q-Learning from Demonstrations Todd Hester, Matej Vecerík, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew Sendonaris, Ian Osband, Gabriel Dulac-Arnold, John P. Agapiou, Joel Z. Leibo, Audrunas Gruslys
ICLR 2018 The Reactor: A Fast and Sample-Efficient Actor-Critic Agent for Reinforcement Learning Audrunas Gruslys, Will Dabney, Mohammad Gheshlaghi Azar, Bilal Piot, Marc Bellemare, Remi Munos
NeurIPS 2017 A Unified Game-Theoretic Approach to Multiagent Reinforcement Learning Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls, Julien Perolat, David Silver, Thore Graepel
NeurIPS 2016 Memory-Efficient Backpropagation Through Time Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, Alex Graves