ML Anthology
Authors
Search
About
Gupta, Maya
24 publications
TMLR
2024
Expected Pinball Loss for Quantile Regression and Inverse CDF Estimation
Taman Narayan
,
Serena Lutong Wang
,
Kevin Robert Canini
,
Maya Gupta
ICML
2022
Global Optimization Networks
Sen Zhao
,
Erez Louidor
,
Maya Gupta
ICML
2020
Deep k-NN for Noisy Labels
Dara Bahri
,
Heinrich Jiang
,
Maya Gupta
AISTATS
2020
Deontological Ethics by Monotonicity Shape Constraints
Serena Wang
,
Maya Gupta
ICML
2020
Multidimensional Shape Constraints
Maya Gupta
,
Erez Louidor
,
Oleksandr Mangylov
,
Nobu Morioka
,
Taman Narayan
,
Sen Zhao
ICML
2020
Optimizing Black-Box Metrics with Adaptive Surrogates
Qijia Jiang
,
Olaoluwa Adigun
,
Harikrishna Narasimhan
,
Mahdi Milani Fard
,
Maya Gupta
NeurIPS
2020
Robust Optimization for Fairness with Noisy Protected Groups
Serena Wang
,
Wenshuo Guo
,
Harikrishna Narasimhan
,
Andrew Cotter
,
Maya Gupta
,
Michael I. Jordan
ICML
2019
Metric-Optimized Example Weights
Sen Zhao
,
Mahdi Milani Fard
,
Harikrishna Narasimhan
,
Maya Gupta
NeurIPS
2019
On Making Stochastic Classifiers Deterministic
Andrew Cotter
,
Maya Gupta
,
Harikrishna Narasimhan
JMLR
2019
Optimization with Non-Differentiable Constraints with Applications to Fairness, Recall, Churn, and Other Goals
Andrew Cotter
,
Heinrich Jiang
,
Maya Gupta
,
Serena Wang
,
Taman Narayan
,
Seungil You
,
Karthik Sridharan
NeurIPS
2019
Optimizing Generalized Rate Metrics with Three Players
Harikrishna Narasimhan
,
Andrew Cotter
,
Maya Gupta
ICML
2019
Shape Constraints for Set Functions
Andrew Cotter
,
Maya Gupta
,
Heinrich Jiang
,
Erez Louidor
,
James Muller
,
Tamann Narayan
,
Serena Wang
,
Tao Zhu
ICML
2019
Training Well-Generalizing Classifiers for Fairness Metrics and Other Data-Dependent Constraints
Andrew Cotter
,
Maya Gupta
,
Heinrich Jiang
,
Nathan Srebro
,
Karthik Sridharan
,
Serena Wang
,
Blake Woodworth
,
Seungil You
ICML
2018
Constrained Interacting Submodular Groupings
Andrew Cotter
,
Mahdi Milani Fard
,
Seungil You
,
Maya Gupta
,
Jeff Bilmes
NeurIPS
2018
Diminishing Returns Shape Constraints for Interpretability and Regularization
Maya Gupta
,
Dara Bahri
,
Andrew Cotter
,
Kevin Canini
NeurIPS
2018
To Trust or Not to Trust a Classifier
Heinrich Jiang
,
Been Kim
,
Melody Guan
,
Maya Gupta
NeurIPS
2017
Deep Lattice Networks and Partial Monotonic Functions
Seungil You
,
David Ding
,
Kevin Canini
,
Jan Pfeifer
,
Maya Gupta
NeurIPS
2016
Fast and Flexible Monotonic Functions with Ensembles of Lattices
Mahdi Milani Fard
,
Kevin Canini
,
Andrew Cotter
,
Jan Pfeifer
,
Maya Gupta
NeurIPS
2016
Launch and Iterate: Reducing Prediction Churn
Mahdi Milani Fard
,
Quentin Cormier
,
Kevin Canini
,
Maya Gupta
JMLR
2016
Monotonic Calibrated Interpolated Look-up Tables
Maya Gupta
,
Andrew Cotter
,
Jan Pfeifer
,
Konstantin Voevodski
,
Kevin Canini
,
Alexander Mangylov
,
Wojciech Moczydlowski
,
Alexander van Esbroeck
NeurIPS
2016
Satisfying Real-World Goals with Dataset Constraints
Gabriel Goh
,
Andrew Cotter
,
Maya Gupta
,
Michael P Friedlander
NeurIPS
2012
Multi-Task Averaging
Sergey Feldman
,
Maya Gupta
,
Bela Frigyik
NeurIPS
2010
Shadow Dirichlet for Restricted Probability Modeling
Bela Frigyik
,
Maya Gupta
,
Yihua Chen
NeurIPS
2009
Lattice Regression
Eric Garcia
,
Maya Gupta