Gupta, Sunil

70 publications

IJCAI 2025 Beyond the Known: Decision Making with Counterfactual Reasoning Decision Transformer Minh Hoang Nguyen, Linh Le Pham Van, Thommen George Karimpanal, Sunil Gupta, Hung Le
UAI 2025 Black-Box Optimization with Unknown Constraints via Overparameterized Deep Neural Networks Dat Phan Trong, Hung The Tran, Sunil Gupta
ICLR 2025 Causal Discovery via Bayesian Optimization Bao Duong, Sunil Gupta, Thin Nguyen
ECML-PKDD 2025 Designing Search Space for Unbounded Bayesian Optimization via Transfer Learning Quoc Anh Hoang Nguyen, Hung The Tran, Sunil Gupta, Dung D. Le
WACV 2025 EvoCL: Continual Learning over Evolving Domains Vishnuprasadh Kumaravelu, P.K. Srijith, Sunil Gupta
WACV 2025 Fair Domain Generalization with Heterogeneous Sensitive Attributes Across Domains Ragja Palakkadavath, Hung Le, Thanh Nguyen-Tang, Sunil Gupta, Svetha Venkatesh
AISTATS 2025 High Dimensional Bayesian Optimization Using Lasso Variable Selection Vu Viet Hoang, Hung The Tran, Sunil Gupta, Vu Nguyen
ECML-PKDD 2025 Hybrid Cross-Domain Robust Reinforcement Learning Linh Le Pham Van, Minh Hoang Nguyen, Hung Le, Hung The Tran, Sunil Gupta
IJCAI 2025 Navigating Social Dilemmas with LLM-Based Agents via Consideration of Future Consequences Dung Nguyen, Hung Le, Kien Do, Sunil Gupta, Svetha Venkatesh, Truyen Tran
NeurIPS 2025 Reproducing Kernel Banach Space Models for Neural Networks with Application to Rademacher Complexity Analysis Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh
ICLR 2025 Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning Hung Le, Dung Nguyen, Kien Do, Sunil Gupta, Svetha Venkatesh
NeurIPS 2024 Active Set Ordering Quoc Phong Nguyen, Sunil Gupta, Svetha Venkatesh, Bryan Kian Hsiang Low, Patrick Jaillet
IJCAI 2024 Diversifying Training Pool Predictability for Zero-Shot Coordination: A Theory of Mind Approach Dung Nguyen, Hung Le, Kien Do, Sunil Gupta, Svetha Venkatesh, Truyen Tran
IJCAI 2024 EMOTE: An Explainable Architecture for Modelling the Other Through Empathy Manisha Senadeera, Thommen Karimpanal George, Stephan Jacobs, Sunil Gupta, Santu Rana
ECML-PKDD 2024 Enhanced Bayesian Optimization via Preferential Modeling of Abstract Properties A. V. Arun Kumar, Alistair Shilton, Sunil Gupta, Santu Rana, Stewart Greenhill, Svetha Venkatesh
ECML-PKDD 2024 Improving Diversity in Black-Box Few-Shot Knowledge Distillation Tri-Nhan Vo, Dang Nguyen, Kien Do, Sunil Gupta
WACV 2024 Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh
ECML-PKDD 2024 PINN-BO: A Black-Box Optimization Algorithm Using Physics-Informed Neural Networks Dat Phan-Trong, Hung The Tran, Alistair Shilton, Sunil Gupta
ACML 2024 Robust Transfer Learning for Active Level Set Estimation with Locally Adaptive Gaussian Process Prior Giang Ngo, Dang Nguyen, Sunil Gupta
AAAI 2024 Root Cause Explanation of Outliers Under Noisy Mechanisms Phuoc Nguyen, Truyen Tran, Sunil Gupta, Thin Nguyen, Svetha Venkatesh
ACML 2023 Active Level Set Estimation for Continuous Search Space with Theoretical Guarantee Giang Ngo, Dang Nguyen, Dat Phan-Trong, Sunil Gupta
WACV 2023 Continual Learning with Dependency Preserving Hypernetworks Dupati Srikar Chandra, Sakshi Varshney, P. K. Srijith, Sunil Gupta
ACML 2023 Domain Generalization with Interpolation Robustness Ragja Palakkadavath, Thanh Nguyen-Tang, Hung Le, Svetha Venkatesh, Sunil Gupta
ICML 2023 Gradient Descent in Neural Networks as Sequential Learning in Reproducing Kernel Banach Space Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh
WACV 2023 Guiding Visual Question Answering with Attention Priors Thao Minh Le, Vuong Le, Sunil Gupta, Svetha Venkatesh, Truyen Tran
NeurIPSW 2023 Hierarchical GFlowNet for Crystal Structure Generation Tri Minh Nguyen, Sherif Abdulkader Tawfik, Truyen Tran, Sunil Gupta, Santu Rana, Svetha Venkatesh
ICCV 2023 Multi-Weather Image Restoration via Domain Translation Prashant W. Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh, Subrahmanyam Murala
AAAI 2023 On Instance-Dependent Bounds for Offline Reinforcement Learning with Linear Function Approximation Thanh Nguyen-Tang, Ming Yin, Sunil Gupta, Svetha Venkatesh, Raman Arora
AISTATS 2022 Regret Bounds for Expected Improvement Algorithms in Gaussian Process Bandit Optimization Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh
ECCV 2022 Black-Box Few-Shot Knowledge Distillation Dang Nguyen, Sunil Gupta, Kien Do, Svetha Venkatesh
NeurIPS 2022 Expected Improvement for Contextual Bandits Hung Tran-The, Sunil Gupta, Santu Rana, Tuan Truong, Long Tran-Thanh, Svetha Venkatesh
NeurIPSW 2022 Improving Domain Generalization with Interpolation Robustness Ragja Palakkadavath, Thanh Nguyen-Tang, Sunil Gupta, Svetha Venkatesh
NeurIPSW 2022 Improving Domain Generalization with Interpolation Robustness Ragja Palakkadavath, Thanh Nguyen-Tang, Sunil Gupta, Svetha Venkatesh
NeurIPS 2022 Learning to Constrain Policy Optimization with Virtual Trust Region Thai Hung Le, Thommen Karimpanal George, Majid Abdolshah, Dung Nguyen, Kien Do, Sunil Gupta, Svetha Venkatesh
ICLR 2022 Offline Neural Contextual Bandits: Pessimism, Optimization and Generalization Thanh Nguyen-Tang, Sunil Gupta, A. Tuan Nguyen, Svetha Venkatesh
TMLR 2022 On Sample Complexity of Offline Reinforcement Learning with Deep ReLU Networks in Besov Spaces Thanh Nguyen-Tang, Sunil Gupta, Hung Tran-The, Svetha Venkatesh
AAAI 2022 TRF: Learning Kernels with Tuned Random Features Alistair Shilton, Sunil Gupta, Santu Rana, Arun Kumar Anjanapura Venkatesh, Svetha Venkatesh
ECCV 2022 Video Restoration Framework and Its Meta-Adaptations to Data-Poor Conditions Prashant W Patil, Sunil Gupta, Santu Rana, Svetha Venkatesh
ICML 2021 A New Representation of Successor Features for Transfer Across Dissimilar Environments Majid Abdolshah, Hung Le, Thommen Karimpanal George, Sunil Gupta, Santu Rana, Svetha Venkatesh
ICML 2021 Bayesian Optimistic Optimisation with Exponentially Decaying Regret Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh
AAAI 2021 Distributional Reinforcement Learning via Moment Matching Thanh Nguyen-Tang, Sunil Gupta, Svetha Venkatesh
ECML-PKDD 2021 Fast Conditional Network Compression Using Bayesian HyperNetworks Phuoc Nguyen, Truyen Tran, Ky Le, Sunil Gupta, Santu Rana, Dang Nguyen, Trong Nguyen, Shannon Ryan, Svetha Venkatesh
AAAI 2021 High Dimensional Level Set Estimation with Bayesian Neural Network Huong Ha, Sunil Gupta, Santu Rana, Svetha Venkatesh
NeurIPS 2021 Kernel Functional Optimisation Arun Kumar Anjanapura Venkatesh, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh
ECML-PKDD 2021 Knowledge Distillation with Distribution Mismatch Dang Nguyen, Sunil Gupta, Trong Nguyen, Santu Rana, Phuoc Nguyen, Truyen Tran, Ky Le, Shannon Ryan, Svetha Venkatesh
ECML-PKDD 2021 Variational Hyper-Encoding Networks Phuoc Nguyen, Truyen Tran, Sunil Gupta, Santu Rana, Hieu-Chi Dam, Svetha Venkatesh
AISTATS 2020 Accelerated Bayesian Optimisation Through Weight-Prior Tuning Alistair Shilton, Sunil Gupta, Santu Rana, Pratibha Vellanki, Cheng Li, Svetha Venkatesh, Laurence Park, Alessandra Sutti, David Rubin, Thomas Dorin, Alireza Vahid, Murray Height, Teo Slezak
AAAI 2020 Bayesian Optimization for Categorical and Category-Specific Continuous Inputs Dang Nguyen, Sunil Gupta, Santu Rana, Alistair Shilton, Svetha Venkatesh
ECML-PKDD 2020 Bayesian Optimization with Missing Inputs Phuc Luong, Dang Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh
ICML 2020 DeepCoDA: Personalized Interpretability for Compositional Health Data Thomas Quinn, Dang Nguyen, Santu Rana, Sunil Gupta, Svetha Venkatesh
AISTATS 2020 Distributionally Robust Bayesian Quadrature Optimization Thanh Nguyen, Sunil Gupta, Huong Ha, Santu Rana, Svetha Venkatesh
IJCAI 2020 Randomised Gaussian Process Upper Confidence Bound for Bayesian Optimisation Julian Berk, Sunil Gupta, Santu Rana, Svetha Venkatesh
ECML-PKDD 2020 Scalable Backdoor Detection in Neural Networks Haripriya Harikumar, Vuong Le, Santu Rana, Sourangshu Bhattacharya, Sunil Gupta, Svetha Venkatesh
NeurIPS 2020 Sub-Linear Regret Bounds for Bayesian Optimisation in Unknown Search Spaces Hung Tran-The, Sunil Gupta, Santu Rana, Huong Ha, Svetha Venkatesh
AAAI 2020 Trading Convergence Rate with Computational Budget in High Dimensional Bayesian Optimization Hung Tran-The, Sunil Gupta, Santu Rana, Svetha Venkatesh
AAAI 2019 Bayesian Functional Optimisation with Shape Prior Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin de Celis Leal, Alessandra Sutti, Murray Height, Svetha Venkatesh
NeurIPS 2019 Bayesian Optimization with Unknown Search Space Huong Ha, Santu Rana, Sunil Gupta, Thanh Nguyen, Hung Tran-The, Svetha Venkatesh
NeurIPS 2019 Multi-Objective Bayesian Optimisation with Preferences over Objectives Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh
NeurIPS 2018 Algorithmic Assurance: An Active Approach to Algorithmic Testing Using Bayesian Optimisation Shivapratap Gopakumar, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh
AISTATS 2018 Exploiting Strategy-Space Diversity for Batch Bayesian Optimization Sunil Gupta, Alistair Shilton, Santu Rana, Svetha Venkatesh
ECML-PKDD 2018 Exploration Enhanced Expected Improvement for Bayesian Optimization Julian Berk, Vu Nguyen, Sunil Gupta, Santu Rana, Svetha Venkatesh
ECML-PKDD 2018 Information-Theoretic Transfer Learning Framework for Bayesian Optimisation Anil Ramachandran, Sunil Gupta, Santu Rana, Svetha Venkatesh
UAI 2018 Multi-Target Optimisation via Bayesian Optimisation and Linear Programming Alistair Shilton, Santu Rana, Sunil Gupta, Svetha Venkatesh
IJCAI 2017 High Dimensional Bayesian Optimization Using Dropout Cheng Li, Sunil Gupta, Santu Rana, Vu Nguyen, Svetha Venkatesh, Alistair Shilton
ICML 2017 High Dimensional Bayesian Optimization with Elastic Gaussian Process Santu Rana, Cheng Li, Sunil Gupta, Vu Nguyen, Svetha Venkatesh
NeurIPS 2017 Process-Constrained Batch Bayesian Optimisation Pratibha Vellanki, Santu Rana, Sunil Gupta, David Rubin, Alessandra Sutti, Thomas Dorin, Murray Height, Paul Sanders, Svetha Venkatesh
AISTATS 2017 Regret Bounds for Transfer Learning in Bayesian Optimisation Alistair Shilton, Sunil Gupta, Santu Rana, Svetha Venkatesh
ACML 2017 Regret for Expected Improvement over the Best-Observed Value and Stopping Condition Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh
ACML 2016 A Bayesian Nonparametric Approach for Multi-Label Classification Vu Nguyen, Sunil Gupta, Santu Rana, Cheng Li, Svetha Venkatesh
ICML 2013 Factorial Multi-Task Learning : A Bayesian Nonparametric Approach Sunil Gupta, Dinh Phung, Svetha Venkatesh