ML Anthology
Authors
Search
About
Haghtalab, Nika
37 publications
COLT
2025
Conference on Learning Theory 2025: Preface
Nika Haghtalab
,
Ankur Moitra
NeurIPS
2025
Distortion of AI Alignment: Does Preference Optimization Optimize for Preferences?
Paul Gölz
,
Nika Haghtalab
,
Kunhe Yang
NeurIPS
2025
From Style to Facts: Mapping the Boundaries of Knowledge Injection with Finetuning
Eric Zhao
,
Pranjal Awasthi
,
Nika Haghtalab
ICML
2025
Learning with Multi-Group Guarantees for Clusterable Subpopulations
Jessica Dai
,
Nika Haghtalab
,
Eric Zhao
NeurIPS
2025
Sample-Adaptivity Tradeoff in On-Demand Sampling
Nika Haghtalab
,
Omar Montasser
,
Mingda Qiao
AISTATS
2024
Can Probabilistic Feedback Drive User Impacts in Online Platforms?
Jessica Dai
,
Bailey Flanigan
,
Nika Haghtalab
,
Meena Jagadeesan
,
Chara Podimata
ICML
2024
Covert Malicious Finetuning: Challenges in Safeguarding LLM Adaptation
Danny Halawi
,
Alexander Wei
,
Eric Wallace
,
Tony Tong Wang
,
Nika Haghtalab
,
Jacob Steinhardt
AISTATS
2024
Delegating Data Collection in Decentralized Machine Learning
Nivasini Ananthakrishnan
,
Stephen Bates
,
Michael Jordan
,
Nika Haghtalab
NeurIPS
2024
Is Knowledge Power? on the (Im)possibility of Learning from Strategic Interactions
Nivasini Ananthakrishnan
,
Nika Haghtalab
,
Chara Podimata
,
Kunhe Yang
NeurIPS
2024
Truthfulness of Calibration Measures
Nika Haghtalab
,
Mingda Qiao
,
Kunhe Yang
,
Eric Zhao
NeurIPS
2023
A Unifying Perspective on Multi-Calibration: Game Dynamics for Multi-Objective Learning
Nika Haghtalab
,
Michael I. Jordan
,
Eric Zhao
NeurIPS
2023
Calibrated Stackelberg Games: Learning Optimal Commitments Against Calibrated Agents
Nika Haghtalab
,
Chara Podimata
,
Kunhe Yang
AAAI
2023
Competition, Alignment, and Equilibria in Digital Marketplaces
Meena Jagadeesan
,
Michael I. Jordan
,
Nika Haghtalab
NeurIPS
2023
Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition
Meena Jagadeesan
,
Michael I. Jordan
,
Jacob Steinhardt
,
Nika Haghtalab
NeurIPS
2023
Jailbroken: How Does LLM Safety Training Fail?
Alexander Wei
,
Nika Haghtalab
,
Jacob Steinhardt
COLT
2023
Open Problem: The Sample Complexity of Multi-Distribution Learning for VC Classes
Pranjal Awasthi
,
Nika Haghtalab
,
Eric Zhao
NeurIPS
2023
Smoothed Analysis of Sequential Probability Assignment
Alankrita Bhatt
,
Nika Haghtalab
,
Abhishek Shetty
ALT
2022
Algorithmic Learning Theory 2022: Preface
Sanjoy Dasgupta
,
Nika Haghtalab
NeurIPS
2022
On-Demand Sampling: Learning Optimally from Multiple Distributions
Nika Haghtalab
,
Michael I. Jordan
,
Eric Zhao
NeurIPS
2022
Oracle-Efficient Online Learning for Smoothed Adversaries
Nika Haghtalab
,
Yanjun Han
,
Abhishek Shetty
,
Kunhe Yang
ICML
2021
One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning
Avrim Blum
,
Nika Haghtalab
,
Richard Lanas Phillips
,
Han Shao
IJCAI
2020
Maximizing Welfare with Incentive-Aware Evaluation Mechanisms
Nika Haghtalab
,
Nicole Immorlica
,
Brendan Lucier
,
Jack Z. Wang
NeurIPS
2020
Smoothed Analysis of Online and Differentially Private Learning
Nika Haghtalab
,
Tim Roughgarden
,
Abhishek Shetty
AISTATS
2019
Structured Robust Submodular Maximization: Offline and Online Algorithms
Nima Anari
,
Nika Haghtalab
,
Seffi Naor
,
Sebastian Pokutta
,
Mohit Singh
,
Alfredo Torrico
IJCAI
2019
The Provable Virtue of Laziness in Motion Planning
Nika Haghtalab
,
Simon Mackenzie
,
Ariel D. Procaccia
,
Oren Salzman
,
Siddhartha S. Srinivasa
NeurIPS
2019
Toward a Characterization of Loss Functions for Distribution Learning
Nika Haghtalab
,
Cameron Musco
,
Bo Waggoner
AAAI
2018
Algorithms for Generalized Topic Modeling
Avrim Blum
,
Nika Haghtalab
AAAI
2018
Weighted Voting via No-Regret Learning
Nika Haghtalab
,
Ritesh Noothigattu
,
Ariel D. Procaccia
NeurIPS
2017
Collaborative PAC Learning
Avrim Blum
,
Nika Haghtalab
,
Ariel D Procaccia
,
Mingda Qiao
COLT
2017
Efficient PAC Learning from the Crowd
Pranjal Awasthi
,
Avrim Blum
,
Nika Haghtalab
,
Yishay Mansour
NeurIPS
2017
Online Learning with a Hint
Ofer Dekel
,
Arthur Flajolet
,
Nika Haghtalab
,
Patrick Jaillet
COLT
2016
Learning and 1-Bit Compressed Sensing Under Asymmetric Noise
Pranjal Awasthi
,
Maria-Florina Balcan
,
Nika Haghtalab
,
Hongyang Zhang
IJCAI
2016
Three Strategies to Success: Learning Adversary Models in Security Games
Nika Haghtalab
,
Fei Fang
,
Thanh Hong Nguyen
,
Arunesh Sinha
,
Ariel D. Procaccia
,
Milind Tambe
COLT
2015
Efficient Learning of Linear Separators Under Bounded Noise
Pranjal Awasthi
,
Maria-Florina Balcan
,
Nika Haghtalab
,
Ruth Urner
ICML
2014
Clustering in the Presence of Background Noise
Shai Ben-David
,
Nika Haghtalab
AAAI
2014
Lazy Defenders Are Almost Optimal Against Diligent Attackers
Avrim Blum
,
Nika Haghtalab
,
Ariel D. Procaccia
NeurIPS
2014
Learning Optimal Commitment to Overcome Insecurity
Avrim Blum
,
Nika Haghtalab
,
Ariel D Procaccia