Haghtalab, Nika

37 publications

COLT 2025 Conference on Learning Theory 2025: Preface Nika Haghtalab, Ankur Moitra
NeurIPS 2025 Distortion of AI Alignment: Does Preference Optimization Optimize for Preferences? Paul Gölz, Nika Haghtalab, Kunhe Yang
NeurIPS 2025 From Style to Facts: Mapping the Boundaries of Knowledge Injection with Finetuning Eric Zhao, Pranjal Awasthi, Nika Haghtalab
ICML 2025 Learning with Multi-Group Guarantees for Clusterable Subpopulations Jessica Dai, Nika Haghtalab, Eric Zhao
NeurIPS 2025 Sample-Adaptivity Tradeoff in On-Demand Sampling Nika Haghtalab, Omar Montasser, Mingda Qiao
AISTATS 2024 Can Probabilistic Feedback Drive User Impacts in Online Platforms? Jessica Dai, Bailey Flanigan, Nika Haghtalab, Meena Jagadeesan, Chara Podimata
ICML 2024 Covert Malicious Finetuning: Challenges in Safeguarding LLM Adaptation Danny Halawi, Alexander Wei, Eric Wallace, Tony Tong Wang, Nika Haghtalab, Jacob Steinhardt
AISTATS 2024 Delegating Data Collection in Decentralized Machine Learning Nivasini Ananthakrishnan, Stephen Bates, Michael Jordan, Nika Haghtalab
NeurIPS 2024 Is Knowledge Power? on the (Im)possibility of Learning from Strategic Interactions Nivasini Ananthakrishnan, Nika Haghtalab, Chara Podimata, Kunhe Yang
NeurIPS 2024 Truthfulness of Calibration Measures Nika Haghtalab, Mingda Qiao, Kunhe Yang, Eric Zhao
NeurIPS 2023 A Unifying Perspective on Multi-Calibration: Game Dynamics for Multi-Objective Learning Nika Haghtalab, Michael I. Jordan, Eric Zhao
NeurIPS 2023 Calibrated Stackelberg Games: Learning Optimal Commitments Against Calibrated Agents Nika Haghtalab, Chara Podimata, Kunhe Yang
AAAI 2023 Competition, Alignment, and Equilibria in Digital Marketplaces Meena Jagadeesan, Michael I. Jordan, Nika Haghtalab
NeurIPS 2023 Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition Meena Jagadeesan, Michael I. Jordan, Jacob Steinhardt, Nika Haghtalab
NeurIPS 2023 Jailbroken: How Does LLM Safety Training Fail? Alexander Wei, Nika Haghtalab, Jacob Steinhardt
COLT 2023 Open Problem: The Sample Complexity of Multi-Distribution Learning for VC Classes Pranjal Awasthi, Nika Haghtalab, Eric Zhao
NeurIPS 2023 Smoothed Analysis of Sequential Probability Assignment Alankrita Bhatt, Nika Haghtalab, Abhishek Shetty
ALT 2022 Algorithmic Learning Theory 2022: Preface Sanjoy Dasgupta, Nika Haghtalab
NeurIPS 2022 On-Demand Sampling: Learning Optimally from Multiple Distributions Nika Haghtalab, Michael I. Jordan, Eric Zhao
NeurIPS 2022 Oracle-Efficient Online Learning for Smoothed Adversaries Nika Haghtalab, Yanjun Han, Abhishek Shetty, Kunhe Yang
ICML 2021 One for One, or All for All: Equilibria and Optimality of Collaboration in Federated Learning Avrim Blum, Nika Haghtalab, Richard Lanas Phillips, Han Shao
IJCAI 2020 Maximizing Welfare with Incentive-Aware Evaluation Mechanisms Nika Haghtalab, Nicole Immorlica, Brendan Lucier, Jack Z. Wang
NeurIPS 2020 Smoothed Analysis of Online and Differentially Private Learning Nika Haghtalab, Tim Roughgarden, Abhishek Shetty
AISTATS 2019 Structured Robust Submodular Maximization: Offline and Online Algorithms Nima Anari, Nika Haghtalab, Seffi Naor, Sebastian Pokutta, Mohit Singh, Alfredo Torrico
IJCAI 2019 The Provable Virtue of Laziness in Motion Planning Nika Haghtalab, Simon Mackenzie, Ariel D. Procaccia, Oren Salzman, Siddhartha S. Srinivasa
NeurIPS 2019 Toward a Characterization of Loss Functions for Distribution Learning Nika Haghtalab, Cameron Musco, Bo Waggoner
AAAI 2018 Algorithms for Generalized Topic Modeling Avrim Blum, Nika Haghtalab
AAAI 2018 Weighted Voting via No-Regret Learning Nika Haghtalab, Ritesh Noothigattu, Ariel D. Procaccia
NeurIPS 2017 Collaborative PAC Learning Avrim Blum, Nika Haghtalab, Ariel D Procaccia, Mingda Qiao
COLT 2017 Efficient PAC Learning from the Crowd Pranjal Awasthi, Avrim Blum, Nika Haghtalab, Yishay Mansour
NeurIPS 2017 Online Learning with a Hint Ofer Dekel, Arthur Flajolet, Nika Haghtalab, Patrick Jaillet
COLT 2016 Learning and 1-Bit Compressed Sensing Under Asymmetric Noise Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, Hongyang Zhang
IJCAI 2016 Three Strategies to Success: Learning Adversary Models in Security Games Nika Haghtalab, Fei Fang, Thanh Hong Nguyen, Arunesh Sinha, Ariel D. Procaccia, Milind Tambe
COLT 2015 Efficient Learning of Linear Separators Under Bounded Noise Pranjal Awasthi, Maria-Florina Balcan, Nika Haghtalab, Ruth Urner
ICML 2014 Clustering in the Presence of Background Noise Shai Ben-David, Nika Haghtalab
AAAI 2014 Lazy Defenders Are Almost Optimal Against Diligent Attackers Avrim Blum, Nika Haghtalab, Ariel D. Procaccia
NeurIPS 2014 Learning Optimal Commitment to Overcome Insecurity Avrim Blum, Nika Haghtalab, Ariel D Procaccia