Hajiramezanali, Ehsan

28 publications

ICLR 2025 Adding Conditional Control to Diffusion Models with Reinforcement Learning Yulai Zhao, Masatoshi Uehara, Gabriele Scalia, Sunyuan Kung, Tommaso Biancalani, Sergey Levine, Ehsan Hajiramezanali
ICLRW 2025 MolCap-Arena: A Comprehensive Captioning Benchmark on Language-Enhanced Molecular Property Prediction Carl Edwards, Ziqing Lu, Ehsan Hajiramezanali, Tommaso Biancalani, Heng Ji, Gabriele Scalia
ICLRW 2025 RAG-Enhanced Collaborative LLM Agents for Drug Discovery Namkyeong Lee, Edward De Brouwer, Ehsan Hajiramezanali, Tommaso Biancalani, Chanyoung Park, Gabriele Scalia
NeurIPS 2024 Bridging Model-Based Optimization and Generative Modeling via Conservative Fine-Tuning of Diffusion Models Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gokcen Eraslan, Avantika Lal, Sergey Levine, Tommaso Biancalani
ICMLW 2024 Cell Morphology-Guided Small Molecule Generation with GFlowNets Stephen Zhewen Lu, Ziqing Lu, Ehsan Hajiramezanali, Tommaso Biancalani, Yoshua Bengio, Gabriele Scalia, Michał Koziarski
ICMLW 2024 Cell Morphology-Guided Small Molecule Generation with GFlowNets Stephen Zhewen Lu, Ziqing Lu, Ehsan Hajiramezanali, Tommaso Biancalani, Yoshua Bengio, Gabriele Scalia, Michał Koziarski
ICMLW 2024 Cell Morphology-Guided Small Molecule Generation with GFlowNets Stephen Zhewen Lu, Ziqing Lu, Ehsan Hajiramezanali, Tommaso Biancalani, Yoshua Bengio, Gabriele Scalia, Michał Koziarski
AISTATS 2024 Conformalized Deep Splines for Optimal and Efficient Prediction Sets Nathaniel Diamant, Ehsan Hajiramezanali, Tommaso Biancalani, Gabriele Scalia
ICLRW 2024 Evaluating Spatial Encoding Strategies for Cell Type Annotation with Spatial Omics Data Merel Kuijs, Alma Andersson, Ehsan Hajiramezanali, Tommaso Biancalani, Aicha BenTaieb
ICML 2024 Feedback Efficient Online Fine-Tuning of Diffusion Models Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee Diamant, Alex M Tseng, Sergey Levine, Tommaso Biancalani
NeurIPS 2024 GFlowNet Assisted Biological Sequence Editing Pouya M. Ghari, Alex M. Tseng, Gökcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele Scalia, Ehsan Hajiramezanali
TMLR 2024 Score-Based Explainability for Graph Representations Ehsan Hajiramezanali, Sepideh Maleki, Max W Shen, Kangway V. Chuang, Tommaso Biancalani, Gabriele Scalia
CLeaR 2024 Toward the Identifiability of Comparative Deep Generative Models Romain Lopez, Jan-Christian Huetter, Ehsan Hajiramezanali, Jonathan K Pritchard, Aviv Regev
NeurIPSW 2023 Generative Flow Networks Assisted Biological Sequence Editing Pouya M. Ghari, Alex Tseng, Gökcen Eraslan, Romain Lopez, Tommaso Biancalani, Gabriele Scalia, Ehsan Hajiramezanali
ICMLW 2023 Learning to Explain Hypergraph Neural Networks Sepideh Maleki, Ehsan Hajiramezanali, Gabriele Scalia, Tommaso Biancalani, Kangway V. Chuang
NeurIPSW 2023 Multitask-Guided Self-Supervised Tabular Learning for Patient-Specific Survival Prediction You Wu, Omid Bazgir, Yongju Lee, Tommaso Biancalani, James Lu, Ehsan Hajiramezanali
NeurIPSW 2023 Multitask-Guided Self-Supervised Tabular Learning for Patient-Specific Survival Prediction You Wu, Omid Bazgir, Yongju Lee, Tommaso Biancalani, James Lu, Ehsan Hajiramezanali
NeurIPSW 2023 On the Consistency of GNN Explainability Methods Ehsan Hajiramezanali, Sepideh Maleki, Alex Tseng, Aicha BenTaieb, Gabriele Scalia, Tommaso Biancalani
NeurIPSW 2023 On the Consistency of GNN Explainability Methods Ehsan Hajiramezanali, Sepideh Maleki, Alex Tseng, Aicha BenTaieb, Gabriele Scalia, Tommaso Biancalani
ICML 2023 Towards Understanding and Improving GFlowNet Training Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, Tommaso Biancalani
ICLR 2022 MoReL: Multi-Omics Relational Learning Arman Hasanzadeh, Ehsan Hajiramezanali, Nick Duffield, Xiaoning Qian
NeurIPSW 2022 STab: Self-Supervised Learning for Tabular Data Ehsan Hajiramezanali, Nathaniel Lee Diamant, Gabriele Scalia, Max W Shen
NeurIPS 2021 SubTab: Subsetting Features of Tabular Data for Self-Supervised Representation Learning Talip Ucar, Ehsan Hajiramezanali, Lindsay Edwards
NeurIPS 2020 BayReL: Bayesian Relational Learning for Multi-Omics Data Integration Ehsan Hajiramezanali, Arman Hasanzadeh, Nick Duffield, Krishna Narayanan, Xiaoning Qian
ICML 2020 Bayesian Graph Neural Networks with Adaptive Connection Sampling Arman Hasanzadeh, Ehsan Hajiramezanali, Shahin Boluki, Mingyuan Zhou, Nick Duffield, Krishna Narayanan, Xiaoning Qian
NeurIPS 2019 Semi-Implicit Graph Variational Auto-Encoders Arman Hasanzadeh, Ehsan Hajiramezanali, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian
NeurIPS 2019 Variational Graph Recurrent Neural Networks Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield, Mingyuan Zhou, Xiaoning Qian
NeurIPS 2018 Bayesian Multi-Domain Learning for Cancer Subtype Discovery from Next-Generation Sequencing Count Data Ehsan Hajiramezanali, Siamak Zamani Dadaneh, Alireza Karbalayghareh, Mingyuan Zhou, Xiaoning Qian