Hamprecht, Fred A.

45 publications

ICLR 2025 Beyond Canonicalization: How Tensorial Messages Improve Equivariant Message Passing Peter Lippmann, Gerrit Gerhartz, Roman Remme, Fred A. Hamprecht
NeurIPS 2025 Lorentz Local Canonicalization: How to Make Any Network Lorentz-Equivariant Jonas Spinner, Luigi Favaro, Peter Lippmann, Sebastian Pitz, Gerrit Gerhartz, Tilman Plehn, Fred A. Hamprecht
NeurIPS 2024 Truth Is Universal: Robust Detection of Lies in LLMs Lennart Bürger, Fred A. Hamprecht, Boaz Nadler
ICLR 2023 From $t$-SNE to UMAP with Contrastive Learning Sebastian Damrich, Niklas Böhm, Fred A Hamprecht, Dmitry Kobak
ICML 2023 Geometric Autoencoders - What You See Is What You Decode Philipp Nazari, Sebastian Damrich, Fred A Hamprecht
CVPR 2022 CellTypeGraph: A New Geometric Computer Vision Benchmark Lorenzo Cerrone, Athul Vijayan, Tejasvinee Mody, Kay Schneitz, Fred A. Hamprecht
CVPR 2022 GASP, a Generalized Framework for Agglomerative Clustering of Signed Graphs and Its Application to Instance Segmentation Alberto Bailoni, Constantin Pape, Nathan Hütsch, Steffen Wolf, Thorsten Beier, Anna Kreshuk, Fred A. Hamprecht
NeurIPS 2022 Theory and Approximate Solvers for Branched Optimal Transport with Multiple Sources Peter Lippmann, Enrique Fita Sanmartín, Fred A. Hamprecht
NeurIPS 2021 Directed Probabilistic Watershed Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht
ICCV 2021 Extensions of Karger's Algorithm: Why They Fail in Theory and How They Are Useful in Practice Erik Jenner, Enrique Fita Sanmartín, Fred A. Hamprecht
NeurIPS 2021 On UMAP's True Loss Function Sebastian Damrich, Fred A. Hamprecht
ECCV 2020 Joint Semantic Instance Segmentation on Graphs with the Semantic Mutex Watershed Steffen Wolf, Yuyan Li, Constantin Pape, Alberto Bailoni, Anna Kreshuk, Fred A. Hamprecht
IJCAI 2019 Deep Active Learning with Adaptive Acquisition Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir
ICLR 2019 LeMoNADe: Learned Motif and Neuronal Assembly Detection in Calcium Imaging Videos Elke Kirschbaum, Manuel Haußmann, Steffen Wolf, Hannah Sonntag, Justus Schneider, Shehabeldin Elzoheiry, Oliver Kann, Daniel Durstewitz, Fred A Hamprecht
NeurIPS 2019 Probabilistic Watershed: Sampling All Spanning Forests for Seeded Segmentation and Semi-Supervised Learning Enrique Fita Sanmartin, Sebastian Damrich, Fred A. Hamprecht
UAI 2019 Sampling-Free Variational Inference of Bayesian Neural Networks by Variance Backpropagation Manuel Haußmann, Fred A. Hamprecht, Melih Kandemir
NeurIPS 2017 Cost Efficient Gradient Boosting Sven Peter, Ferran Diego, Fred A. Hamprecht, Boaz Nadler
NeurIPS 2017 Sparse Convolutional Coding for Neuronal Assembly Detection Sven Peter, Elke Kirschbaum, Martin Both, Lee Campbell, Brandon Harvey, Conor Heins, Daniel Durstewitz, Ferran Diego, Fred A. Hamprecht
CVPR 2017 Variational Bayesian Multiple Instance Learning with Gaussian Processes Manuel Haussmann, Fred A. Hamprecht, Melih Kandemir
ECCV 2016 A Generalized Successive Shortest Paths Solver for Tracking Dividing Targets Carsten Haubold, Janez Ales, Steffen Wolf, Fred A. Hamprecht
ECCV 2016 An Efficient Fusion Move Algorithm for the Minimum Cost Lifted Multicut Problem Thorsten Beier, Björn Andres, Ullrich Köthe, Fred A. Hamprecht
ECCV 2016 Gaussian Process Density Counting from Weak Supervision Matthias von Borstel, Melih Kandemir, Philip Schmidt, Madhavi K. Rao, Kumar T. Rajamani, Fred A. Hamprecht
ECCV 2016 Learning Diverse Models: The Coulomb Structured Support Vector Machine Martin Schiegg, Ferran Diego, Fred A. Hamprecht
CVPR 2016 Structured Regression Gradient Boosting Ferran Diego, Fred A. Hamprecht
CVPR 2015 Fusion Moves for Correlation Clustering Thorsten Beier, Fred A. Hamprecht, Jorg H. Kappes
CVPR 2014 Cut, GLUE & Cut: A Fast, Approximate Solver for Multicut Partitioning Thorsten Beier, Thorben Kroeger, Jorg H. Kappes, Ullrich Kothe, Fred A. Hamprecht
UAI 2014 Instance Label Prediction by Dirichlet Process Multiple Instance Learning Melih Kandemir, Fred A. Hamprecht
NeurIPS 2014 Sparse Space-Time Deconvolution for Calcium Image Analysis Ferran Diego Andilla, Fred A. Hamprecht
CVPR 2014 Tracking Indistinguishable Translucent Objects over Time Using Weakly Supervised Structured Learning Luca Fiaschi, Ferran Diego, Konstantin Gregor, Martin Schiegg, Ullrich Koethe, Marta Zlatic, Fred A. Hamprecht
ICCV 2013 Conservation Tracking Martin Schiegg, Philipp Hanslovsky, Bernhard X. Kausler, Lars Hufnagel, Fred A. Hamprecht
NeurIPS 2013 Learning Multi-Level Sparse Representations Ferran Diego Andilla, Fred A. Hamprecht
ICCV 2013 Weakly Supervised Learning of Image Partitioning Using Decision Trees with Structured Split Criteria Christoph Straehle, Ullrich Koethe, Fred A. Hamprecht
ECCV 2012 A Discrete Chain Graph Model for 3d+t Cell Tracking with High Misdetection Robustness Bernhard X. Kausler, Martin Schiegg, Björn Andres, Martin S. Lindner, Ullrich Köthe, Heike Leitte, Jochen Wittbrodt, Lars Hufnagel, Fred A. Hamprecht
UAI 2012 Active Learning with Distributional Estimates Jens Röder, Boaz Nadler, Kevin Kunzmann, Fred A. Hamprecht
CVPR 2012 Efficient Automatic 3D-Reconstruction of Branching Neurons from EM Data Jan Funke, Björn Andres, Fred A. Hamprecht, Albert Cardona, Matthew Cook
ECCV 2012 Globally Optimal Closed-Surface Segmentation for Connectomics Björn Andres, Thorben Kröger, Kevin L. Briggman, Winfried Denk, Natalya Korogod, Graham Knott, Ullrich Köthe, Fred A. Hamprecht
CVPR 2012 Learning to Segment Dense Cell Nuclei with Shape Prior Xinghua Lou, Ullrich Köthe, Jochen Wittbrodt, Fred A. Hamprecht
CVPR 2012 Seeded Watershed Cut Uncertainty Estimators for Guided Interactive Segmentation Christoph N. Straehle, Ullrich Köthe, Graham Knott, Kevin L. Briggman, Winfried Denk, Fred A. Hamprecht
ICML 2012 Structured Learning from Partial Annotations Xinghua Lou, Fred A. Hamprecht
ECCV 2012 The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, Fred A. Hamprecht
ECML-PKDD 2011 On Oblique Random Forests Bjoern H. Menze, B. Michael Kelm, Daniel Nicolas Splitthoff, Ullrich Köthe, Fred A. Hamprecht
ICCV 2011 Probabilistic Image Segmentation with Closedness Constraints Björn Andres, Jörg H. Kappes, Thorsten Beier, Ullrich Köthe, Fred A. Hamprecht
NeurIPS 2011 Structured Learning for Cell Tracking Xinghua Lou, Fred A. Hamprecht
CVPR 2008 On Errors-in-Variables Regression with Arbitrary Covariance and Its Application to Optical Flow Estimation Björn Andres, Claudia Kondermann, Daniel Kondermann, Ullrich Köthe, Fred A. Hamprecht, Christoph S. Garbe
CVPRW 2006 Bayesian Estimation of Smooth Parameter Maps for Dynamic Contrast-Enhanced MR Images with Block-ICM B. Michael Kelm, Natalie Mueller, Bjoern H. Menze, Fred A. Hamprecht