Hanna, Josiah P

27 publications

TMLR 2026 On-Policy Policy Gradient Reinforcement Learning Without On-Policy Sampling Nicholas E. Corrado, Josiah P. Hanna
ICML 2025 Demystifying the Paradox of Importance Sampling with an Estimated History-Dependent Behavior Policy in Off-Policy Evaluation Hongyi Zhou, Josiah P. Hanna, Jin Zhu, Ying Yang, Chengchun Shi
ICML 2025 Stable Offline Value Function Learning with Bisimulation-Based Representations Brahma S Pavse, Yudong Chen, Qiaomin Xie, Josiah P. Hanna
NeurIPS 2025 When Can Model-Free Reinforcement Learning Be Enough for Thinking? Josiah P. Hanna, Nicholas E. Corrado
NeurIPS 2024 Adaptive Exploration for Data-Efficient General Value Function Evaluations Arushi Jain, Josiah P. Hanna, Doina Precup
TMLR 2024 Conservative Evaluation of Offline Policy Learning Hager Radi Abdelwahed, Josiah P. Hanna, Matthew E. Taylor
JMLR 2024 Data-Efficient Policy Evaluation Through Behavior Policy Search Josiah P. Hanna, Yash Chandak, Philip S. Thomas, Martha White, Peter Stone, Scott Niekum
ICML 2024 Learning to Stabilize Online Reinforcement Learning in Unbounded State Spaces Brahma S Pavse, Matthew Zurek, Yudong Chen, Qiaomin Xie, Josiah P. Hanna
ECCV 2024 Reinforcement Learning via Auxillary Task Distillation Abhinav N Harish, Larry Heck, Josiah P Hanna, Zsolt Kira, Andrew Szot
AISTATS 2024 SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits Subhojyoti Mukherjee, Qiaomin Xie, Josiah P Hanna, Robert Nowak
ICML 2024 SaVeR: Optimal Data Collection Strategy for Safe Policy Evaluation in Tabular MDP Subhojyoti Mukherjee, Josiah P. Hanna, Robert D Nowak
AAAI 2024 Scaling Offline Evaluation of Reinforcement Learning Agents Through Abstraction Josiah P. Hanna
ICLR 2024 Understanding When Dynamics-Invariant Data Augmentations Benefit Model-Free Reinforcement Learning Updates Nicholas Corrado, Josiah P. Hanna
ICMLW 2023 SPEED: Experimental Design for Policy Evaluation in Linear Heteroscedastic Bandits Subhojyoti Mukherjee, Qiaomin Xie, Josiah P. Hanna, Robert D Nowak
AAAI 2023 Scaling Marginalized Importance Sampling to High-Dimensional State-Spaces via State Abstraction Brahma S. Pavse, Josiah P. Hanna
ICLR 2023 Temporal Disentanglement of Representations for Improved Generalisation in Reinforcement Learning Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, Stefano V Albrecht
UAI 2022 ReVar: Strengthening Policy Evaluation via Reduced Variance Sampling Subhojyoti Mukherjee, Josiah P. Hanna, Robert D Nowak
NeurIPSW 2022 Scaling Marginalized Importance Sampling to High-Dimensional State-Spaces via State Abstraction Brahma S Pavse, Josiah P. Hanna
CoLLAs 2022 Simulation-Acquired Latent Action Spaces for Dynamics Generalization Nicholas Corrado, Yuxiao Qu, Josiah P. Hanna
NeurIPSW 2022 Temporal Disentanglement of Representations for Improved Generalisation in Reinforcement Learning Mhairi Dunion, Trevor McInroe, Kevin Sebastian Luck, Josiah P. Hanna, Stefano V Albrecht
MLJ 2021 Grounded Action Transformation for Sim-to-Real Reinforcement Learning Josiah P. Hanna, Siddharth Desai, Haresh Karnan, Garrett Warnell, Peter Stone
MLJ 2021 Importance Sampling in Reinforcement Learning with an Estimated Behavior Policy Josiah P. Hanna, Scott Niekum, Peter Stone
AAAI 2019 Selecting Compliant Agents for Opt-in Micro-Tolling Josiah P. Hanna, Guni Sharon, Stephen D. Boyles, Peter Stone
AAAI 2018 DyETC: Dynamic Electronic Toll Collection for Traffic Congestion Alleviation Haipeng Chen, Bo An, Guni Sharon, Josiah P. Hanna, Peter Stone, Chunyan Miao, Yeng Chai Soh
AAAI 2017 Bootstrapping with Models: Confidence Intervals for Off-Policy Evaluation Josiah P. Hanna, Peter Stone, Scott Niekum
ICML 2017 Data-Efficient Policy Evaluation Through Behavior Policy Search Josiah P. Hanna, Philip S. Thomas, Peter Stone, Scott Niekum
AAAI 2017 Grounded Action Transformation for Robot Learning in Simulation Josiah P. Hanna, Peter Stone