ML Anthology
Authors
Search
About
Hanzely, Filip
12 publications
TMLR
2023
Personalized Federated Learning: A Unified Framework and Universal Optimization Techniques
Filip Hanzely
,
Boxin Zhao
,
Mladen Kolar
AISTATS
2021
Local SGD: Unified Theory and New Efficient Methods
Eduard Gorbunov
,
Filip Hanzely
,
Peter Richtarik
NeurIPS
2021
Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization
Mher Safaryan
,
Filip Hanzely
,
Peter Richtarik
UAI
2020
99% of Worker-Master Communication in Distributed Optimization Is Not Needed
Konstantin Mishchenko
,
Filip Hanzely
,
Peter Richtarik
AISTATS
2020
A Unified Theory of SGD: Variance Reduction, Sampling, Quantization and Coordinate Descent
Eduard Gorbunov
,
Filip Hanzely
,
Peter Richtarik
NeurIPS
2020
Lower Bounds and Optimal Algorithms for Personalized Federated Learning
Filip Hanzely
,
Slavomír Hanzely
,
Samuel Horváth
,
Peter Richtarik
ICML
2020
Stochastic Subspace Cubic Newton Method
Filip Hanzely
,
Nikita Doikov
,
Yurii Nesterov
,
Peter Richtarik
ICML
2020
Variance Reduced Coordinate Descent with Acceleration: New Method with a Surprising Application to Finite-Sum Problems
Filip Hanzely
,
Dmitry Kovalev
,
Peter Richtarik
AAAI
2019
A Nonconvex Projection Method for Robust PCA
Aritra Dutta
,
Filip Hanzely
,
Peter Richtárik
AISTATS
2019
Accelerated Coordinate Descent with Arbitrary Sampling and Best Rates for Minibatches
Filip Hanzely
,
Peter Richtarik
NeurIPS
2018
Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization
Robert Gower
,
Filip Hanzely
,
Peter Richtarik
,
Sebastian U Stich
NeurIPS
2018
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
,
Konstantin Mishchenko
,
Peter Richtarik