ML Anthology
Authors
Search
About
Hastie, Trevor J.
12 publications
JMLR
2022
Generalized Matrix Factorization: Efficient Algorithms for Fitting Generalized Linear Latent Variable Models to Large Data Arrays
Lukasz Kidzinski
,
Francis K.C. Hui
,
David I. Warton
,
Trevor J. Hastie
ICLR
2016
Data Representation and Compression Using Linear-Programming Approximations
Hristo S. Paskov
,
John C. Mitchell
,
Trevor J. Hastie
UAI
2015
Fast Algorithms for Learning with Long N-Grams via Suffix Tree Based Matrix Multiplication
Hristo S. Paskov
,
John C. Mitchell
,
Trevor J. Hastie
AISTATS
2014
An Efficient Algorithm for Large Scale Compressive Feature Learning
Hristo S. Paskov
,
John C. Mitchell
,
Trevor J. Hastie
NeurIPS
2008
One Sketch for All: Theory and Application of Conditional Random Sampling
Ping Li
,
Kenneth W. Church
,
Trevor J. Hastie
NeurIPS
2007
A Unified Near-Optimal Estimator for Dimension Reduction in $l_\alpha$ ($0<\alpha\leq 2$) Using Stable Random Projections
Ping Li
,
Trevor J. Hastie
JMLR
2007
Nonlinear Estimators and Tail Bounds for Dimension Reduction in L1 Using Cauchy Random Projections
Ping Li
,
Trevor J. Hastie
,
Kenneth W. Church
NeurIPS
2006
Conditional Random Sampling: A Sketch-Based Sampling Technique for Sparse Data
Ping Li
,
Kenneth W. Church
,
Trevor J. Hastie
NeurIPS
2004
A Method for Inferring Label Sampling Mechanisms in Semi-Supervised Learning
Saharon Rosset
,
Ji Zhu
,
Hui Zou
,
Trevor J. Hastie
NeurIPS
2004
The Entire Regularization Path for the Support Vector Machine
Saharon Rosset
,
Robert Tibshirani
,
Ji Zhu
,
Trevor J. Hastie
NeurIPS
2003
1-Norm Support Vector Machines
Ji Zhu
,
Saharon Rosset
,
Robert Tibshirani
,
Trevor J. Hastie
NeurIPS
2003
Margin Maximizing Loss Functions
Saharon Rosset
,
Ji Zhu
,
Trevor J. Hastie