ML Anthology
Authors
Search
About
Hauskrecht, Milos
34 publications
TMLR
2026
Still Competitive: Revisiting Recurrent Models for Irregular Time Series Prediction
Ankitkumar Joshi
,
Milos Hauskrecht
ICML
2021
Event Outlier Detection in Continuous Time
Siqi Liu
,
Milos Hauskrecht
AAAI
2019
Active Learning of Multi-Class Classification Models from Ordered Class Sets
Yanbing Xue
,
Milos Hauskrecht
NeurIPS
2019
Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes
Siqi Liu
,
Milos Hauskrecht
IJCAI
2018
Hierarchical Active Learning with Group Proportion Feedback
Zhipeng Luo
,
Milos Hauskrecht
ECML-PKDD
2018
Hierarchical Active Learning with Proportion Feedback on Regions
Zhipeng Luo
,
Milos Hauskrecht
AAAI
2016
Learning Adaptive Forecasting Models from Irregularly Sampled Multivariate Clinical Data
Zitao Liu
,
Milos Hauskrecht
AAAI
2016
Multivariate Conditional Outlier Detection and Its Clinical Application
Charmgil Hong
,
Milos Hauskrecht
AAAI
2015
A Regularized Linear Dynamical System Framework for Multivariate Time Series Analysis
Zitao Liu
,
Milos Hauskrecht
AAAI
2015
Multivariate Conditional Anomaly Detection and Its Clinical Application
Charmgil Hong
,
Milos Hauskrecht
AAAI
2015
Obtaining Well Calibrated Probabilities Using Bayesian Binning
Mahdi Pakdaman Naeini
,
Gregory F. Cooper
,
Milos Hauskrecht
ECML-PKDD
2014
Relative Comparison Kernel Learning with Auxiliary Kernels
Eric Heim
,
Hamed Valizadegan
,
Milos Hauskrecht
UAI
2013
The Bregman Variational Dual-Tree Framework
Saeed Amizadeh
,
Bo Thiesson
,
Milos Hauskrecht
ECML-PKDD
2012
A Bayesian Scoring Technique for Mining Predictive and Non-Spurious Rules
Iyad Batal
,
Gregory F. Cooper
,
Milos Hauskrecht
AISTATS
2012
Factorized Diffusion mAP Approximation
Saeed Amizadeh
,
Hamed Valizadegan
,
Milos Hauskrecht
UAI
2012
Variational Dual-Tree Framework for Large-Scale Transition Matrix Approximation
Saeed Amizadeh
,
Bo Thiesson
,
Milos Hauskrecht
IJCAI
2011
An Efficient Framework for Constructing Generalized Locally-Induced Text Metrics
Saeed Amizadeh
,
Shuguang Wang
,
Milos Hauskrecht
ECML-PKDD
2010
A Concise Representation of Association Rules Using Minimal Predictive Rules
Iyad Batal
,
Milos Hauskrecht
AAAI
2010
Latent Variable Model for Learning in Pairwise Markov Networks
Saeed Amizadeh
,
Milos Hauskrecht
MLJ
2010
Learning to Detect Incidents from Noisily Labeled Data
Tomás Singliar
,
Milos Hauskrecht
UAI
2008
Partitioned Linear Programming Approximations for MDPs
Branislav Kveton
,
Milos Hauskrecht
AAAI
2006
Learning Basis Functions in Hybrid Domains
Branislav Kveton
,
Milos Hauskrecht
JMLR
2006
Noisy-or Component Analysis and Its Application to Link Analysis
Tomáš Šingliar
,
Miloš Hauskrecht
JAIR
2006
Solving Factored MDPs with Hybrid State and Action Variables
Branislav Kveton
,
Milos Hauskrecht
,
Carlos Guestrin
IJCAI
2005
An MCMC Approach to Solving Hybrid Factored MDPs
Branislav Kveton
,
Milos Hauskrecht
UAI
2004
Solving Factored MDPs with Continuous and Discrete Variables
Carlos Guestrin
,
Milos Hauskrecht
,
Branislav Kveton
NeurIPS
2003
Linear Program Approximations for Factored Continuous-State Markov Decision Processes
Milos Hauskrecht
,
Branislav Kveton
UAI
2003
Monte-Carlo Optimizations for Resource Allocation Problems in Stochastic Network Systems
Milos Hauskrecht
,
Tomás Singliar
UAI
2001
A Clustering Approach to Solving Large Stochastic Matching Problems
Milos Hauskrecht
,
Eli Upfal
JAIR
2000
Value-Function Approximations for Partially Observable Markov Decision Processes
Milos Hauskrecht
IJCAI
1999
Computing near Optimal Strategies for Stochastic Investment Planning Problems
Milos Hauskrecht
,
Gopal Pandurangan
,
Eli Upfal
UAI
1998
Hierarchical Solution of Markov Decision Processes Using Macro-Actions
Milos Hauskrecht
,
Nicolas Meuleau
,
Leslie Pack Kaelbling
,
Thomas L. Dean
,
Craig Boutilier
AAAI
1998
Solving Very Large Weakly Coupled Markov Decision Processes
Nicolas Meuleau
,
Milos Hauskrecht
,
Kee-Eung Kim
,
Leonid Peshkin
,
Leslie Pack Kaelbling
,
Thomas L. Dean
,
Craig Boutilier
AAAI
1997
Incremental Methods for Computing Bounds in Partially Observable Markov Decision Processes
Milos Hauskrecht