Havasi, Marton

15 publications

ICLR 2025 Boosting Latent Diffusion with Perceptual Objectives Tariq Berrada, Pietro Astolfi, Melissa Hall, Marton Havasi, Yohann Benchetrit, Adriana Romero-Soriano, Karteek Alahari, Michal Drozdzal, Jakob Verbeek
NeurIPS 2025 Edit Flows: Variable Length Discrete Flow Matching with Sequence-Level Edit Operations Marton Havasi, Brian Karrer, Itai Gat, Ricky T. Q. Chen
ICLR 2025 Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles Buu Phan, Brandon Amos, Itai Gat, Marton Havasi, Matthew J. Muckley, Karen Ullrich
ICLR 2025 Flow Matching with General Discrete Paths: A Kinetic-Optimal Perspective Neta Shaul, Itai Gat, Marton Havasi, Daniel Severo, Anuroop Sriram, Peter Holderrieth, Brian Karrer, Yaron Lipman, Ricky T. Q. Chen
ICLR 2025 Generator Matching: Generative Modeling with Arbitrary Markov Processes Peter Holderrieth, Marton Havasi, Jason Yim, Neta Shaul, Itai Gat, Tommi Jaakkola, Brian Karrer, Ricky T. Q. Chen, Yaron Lipman
NeurIPS 2024 On Improved Conditioning Mechanisms and Pre-Training Strategies for Diffusion Models Tariq Berrada, Pietro Astolfi, Melissa Hall, Reyhane Askari-Hemmat, Yohann Benchetrit, Marton Havasi, Matthew Muckley, Karteek Alahari, Adriana Romero-Soriano, Jakob Verbeek, Michal Drozdzal
ICMLW 2024 Understanding and Mitigating Tokenization Bias in Language Models Buu Phan, Marton Havasi, Matthew J. Muckley, Karen Ullrich
NeurIPS 2022 Addressing Leakage in Concept Bottleneck Models Marton Havasi, Sonali Parbhoo, Finale Doshi-Velez
MLHC 2022 Learning Optimal Summaries of Clinical Time-Series with Concept Bottleneck Models Carissa Wu, Sonali Parbhoo, Marton Havasi, Finale Doshi-Velez
NeurIPSW 2022 What Makes a Good Explanation?: A Harmonized View of Properties of Explanations Varshini Subhash, Zixi Chen, Marton Havasi, Weiwei Pan, Finale Doshi-Velez
NeurIPSW 2022 What Makes a Good Explanation?: A Harmonized View of Properties of Explanations Zixi Chen, Varshini Subhash, Marton Havasi, Weiwei Pan, Finale Doshi-Velez
ICLR 2021 Training Independent Subnetworks for Robust Prediction Marton Havasi, Rodolphe Jenatton, Stanislav Fort, Jeremiah Zhe Liu, Jasper Snoek, Balaji Lakshminarayanan, Andrew Mingbo Dai, Dustin Tran
NeurIPS 2020 Compressing Images by Encoding Their Latent Representations with Relative Entropy Coding Gergely Flamich, Marton Havasi, José Miguel Hernández-Lobato
ICLR 2019 Minimal Random Code Learning: Getting Bits Back from Compressed Model Parameters Marton Havasi, Robert Peharz, José Miguel Hernández-Lobato
NeurIPS 2018 Inference in Deep Gaussian Processes Using Stochastic Gradient Hamiltonian Monte Carlo Marton Havasi, José Miguel Hernández-Lobato, Juan José Murillo-Fuentes