ML Anthology
Authors
Search
About
Hayashi, Kohei
26 publications
NeurIPS
2025
Pairwise Optimal Transports for Training All-to-All Flow-Based Condition Transfer Model
Kotaro Ikeda
,
Masanori Koyama
,
Jinzhe Zhang
,
Kohei Hayashi
,
Kenji Fukumizu
ICLR
2024
Neural Fourier Transform: A General Approach to Equivariant Representation Learning
Masanori Koyama
,
Kenji Fukumizu
,
Kohei Hayashi
,
Takeru Miyato
ICLRW
2023
TabRet: Pre-Training Transformer-Based Tabular Models for Unseen Columns
Soma Onishi
,
Kenta Oono
,
Kohei Hayashi
ECML-PKDD
2022
A Scaling Law for Syn2real Transfer: How Much Is Your Pre-Training Effective?
Hiroaki Mikami
,
Kenji Fukumizu
,
Shogo Murai
,
Shuji Suzuki
,
Yuta Kikuchi
,
Taiji Suzuki
,
Shin-ichi Maeda
,
Kohei Hayashi
ICMLW
2022
Learning Switchable Representation with Masked Decoding and Sparse Encoding
Kohei Hayashi
,
Masanori Koyama
AISTATS
2020
On Random Subsampling of Gaussian Process Regression: A Graphon-Based Analysis
Kohei Hayashi
,
Masaaki Imaizumi
,
Yuichi Yoshida
ICLRW
2019
Data Interpolating Prediction: Alternative Interpretation of Mixup
Takuya Shimada
,
Shoichiro Yamaguchi
,
Kohei Hayashi
,
Sosuke Kobayashi
NeurIPS
2019
Exploring Unexplored Tensor Network Decompositions for Convolutional Neural Networks
Kohei Hayashi
,
Taiki Yamaguchi
,
Yohei Sugawara
,
Shin-ichi Maeda
AISTATS
2018
Making Tree Ensembles Interpretable: A Bayesian Model Selection Approach
Satoshi Hara
,
Kohei Hayashi
IJCAI
2018
Think Globally, Embed Locally - Locally Linear Meta-Embedding of Words
Danushka Bollegala
,
Kohei Hayashi
,
Ken-ichi Kawarabayashi
NeurIPS
2017
Fitting Low-Rank Tensors in Constant Time
Kohei Hayashi
,
Yuichi Yoshida
NeurIPS
2017
On Tensor Train Rank Minimization : Statistical Efficiency and Scalable Algorithm
Masaaki Imaizumi
,
Takanori Maehara
,
Kohei Hayashi
IJCAI
2017
Tensor Decomposition with Missing Indices
Yuto Yamaguchi
,
Kohei Hayashi
ICML
2017
Tensor Decomposition with Smoothness
Masaaki Imaizumi
,
Kohei Hayashi
IJCAI
2017
When Does Label Propagation Fail? a View from a Network Generative Model
Yuto Yamaguchi
,
Kohei Hayashi
ICML
2016
Doubly Decomposing Nonparametric Tensor Regression
Masaaki Imaizumi
,
Kohei Hayashi
AAAI
2016
Expected Tensor Decomposition with Stochastic Gradient Descent
Takanori Maehara
,
Kohei Hayashi
,
Ken-ichi Kawarabayashi
IJCAI
2016
Identifying Key Observers to Find Popular Information in Advance
Takuya Konishi
,
Tomoharu Iwata
,
Kohei Hayashi
,
Ken-ichi Kawarabayashi
NeurIPS
2016
Minimizing Quadratic Functions in Constant Time
Kohei Hayashi
,
Yuichi Yoshida
ACML
2015
Bayesian Masking: Sparse Bayesian Estimation with Weaker Shrinkage Bias
Yohei Kondo
,
Shin-ichi Maeda
,
Kohei Hayashi
ICML
2015
Rebuilding Factorized Information Criterion: Asymptotically Accurate Marginal Likelihood
Kohei Hayashi
,
Shin-ichi Maeda
,
Ryohei Fujimaki
NeurIPS
2013
Factorized Asymptotic Bayesian Inference for Latent Feature Models
Kohei Hayashi
,
Ryohei Fujimaki
ICML
2012
Factorized Asymptotic Bayesian Hidden Markov Models
Ryohei Fujimaki
,
Kohei Hayashi
NeurIPS
2012
Weighted Likelihood Policy Search with Model Selection
Tsuyoshi Ueno
,
Kohei Hayashi
,
Takashi Washio
,
Yoshinobu Kawahara
NeurIPS
2011
Statistical Performance of Convex Tensor Decomposition
Ryota Tomioka
,
Taiji Suzuki
,
Kohei Hayashi
,
Hisashi Kashima
ECML-PKDD
2011
Tensor Factorization Using Auxiliary Information
Atsuhiro Narita
,
Kohei Hayashi
,
Ryota Tomioka
,
Hisashi Kashima