ML Anthology
Authors
Search
About
Heimann, Mark
8 publications
ICLR
2024
Accurate and Scalable Estimation of Epistemic Uncertainty for Graph Neural Networks
Puja Trivedi
,
Mark Heimann
,
Rushil Anirudh
,
Danai Koutra
,
Jayaraman J. Thiagarajan
WACV
2023
Contrastive Knowledge-Augmented Meta-Learning for Few-Shot Classification
Rakshith Subramanyam
,
Mark Heimann
,
T.S. Jayram
,
Rushil Anirudh
,
Jayaraman J. Thiagarajan
NeurIPSW
2023
Estimating Epistemic Uncertainty of Graph Neural Networks Using Stochastic Centering
Puja Trivedi
,
Mark Heimann
,
Rushil Anirudh
,
Danai Koutra
,
Jayaraman J. Thiagarajan
LoG
2023
On Performance Discrepancies Across Local Homophily Levels in Graph Neural Networks
Donald Loveland
,
Jiong Zhu
,
Mark Heimann
,
Benjamin Fish
,
Michael T Schaub
,
Danai Koutra
NeurIPS
2022
Analyzing Data-Centric Properties for Graph Contrastive Learning
Puja Trivedi
,
Ekdeep S Lubana
,
Mark Heimann
,
Danai Koutra
,
Jayaraman Thiagarajan
NeurIPSW
2022
Modeling Hierarchical Topological Structure in Scientific Images with Graph Neural Networks
Samuel Leventhal
,
Attila Gyulassy
,
Valerio Pascucci
,
Mark Heimann
NeurIPS
2020
Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs
Jiong Zhu
,
Yujun Yan
,
Lingxiao Zhao
,
Mark Heimann
,
Leman Akoglu
,
Danai Koutra
ECML-PKDD
2019
Node2bits: Compact Time- and Attribute-Aware Node Representations for User Stitching
Di Jin
,
Mark Heimann
,
Ryan A. Rossi
,
Danai Koutra