ML Anthology
Authors
Search
About
Heinonen, Markus
50 publications
ICML
2025
Devil Is in the Details: Density Guidance for Detail-Aware Generation with Flow Models
Rafal Karczewski
,
Markus Heinonen
,
Vikas K Garg
ICLR
2025
Diffusion Models as Cartoonists: The Curious Case of High Density Regions
Rafal Karczewski
,
Markus Heinonen
,
Vikas Garg
ICLR
2025
E(3)-Equivariant Models Cannot Learn Chirality: Field-Based Molecular Generation
Alexandru Dumitrescu
,
Dani Korpela
,
Markus Heinonen
,
Yogesh Verma
,
Valerii Iakovlev
,
Vikas Garg
,
Harri Lähdesmäki
ICLR
2025
Equivariant Denoisers Cannot Copy Graphs: Align Your Graph Diffusion Models
Najwa Laabid
,
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
,
Vikas Garg
ICLR
2025
Free Hunch: Denoiser Covariance Estimation for Diffusion Models Without Extra Costs
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
CVPR
2025
From AlexNet to Transformers: Measuring the Non-Linearity of Deep Neural Networks with Affine Optimal Transport
Quentin Bouniot
,
Ievgen Redko
,
Anton Mallasto
,
Charlotte Laclau
,
Oliver Struckmeier
,
Karol Arndt
,
Markus Heinonen
,
Ville Kyrki
,
Samuel Kaski
TMLR
2025
Gaussian Processes with Bayesian Inference of Covariate Couplings
Mattia Rosso
,
Juho Ylä-Jääski
,
Zheyang Shen
,
Markus Heinonen
,
Maurizio Filippone
ICLRW
2025
Multi-Modal Representation Learning for Molecules
Muhammad Arslan Masood
,
Markus Heinonen
,
Samuel Kaski
ICML
2025
Progressive Tempering Sampler with Diffusion
Severi Rissanen
,
Ruikang Ouyang
,
Jiajun He
,
Wenlin Chen
,
Markus Heinonen
,
Arno Solin
,
José Miguel Hernández-Lobato
AISTATS
2025
Robust Classification by Coupling Data Mollification with Label Smoothing
Markus Heinonen
,
Ba-Hien Tran
,
Michael Kampffmeyer
,
Maurizio Filippone
AISTATS
2025
What Ails Generative Structure-Based Drug Design: Expressivity Is Too Little or Too Much?
Rafal Karczewski
,
Samuel Kaski
,
Markus Heinonen
,
Vikas K Garg
ICMLW
2024
Aligned Diffusion Models for Retrosynthesis
Najwa Laabid
,
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
,
Vikas Garg
ICMLW
2024
Aligned Diffusion Models for Retrosynthesis
Najwa Laabid
,
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
,
Vikas Garg
ICLR
2024
ClimODE: Climate and Weather Forecasting with Physics-Informed Neural ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
ICMLW
2024
Conditional Flow Matching for Time Series Modelling
Ella Tamir
,
Najwa Laabid
,
Markus Heinonen
,
Vikas Garg
,
Arno Solin
ICMLW
2024
From AlexNet to Transformers: Measuring the Non-Linearity of Deep Neural Networks with Affine Optimal Transport
Quentin Bouniot
,
Ievgen Redko
,
Anton Mallasto
,
Charlotte Laclau
,
Oliver Struckmeier
,
Karol Arndt
,
Markus Heinonen
,
Ville Kyrki
,
Samuel Kaski
NeurIPS
2024
Improving Robustness to Corruptions with Multiplicative Weight Perturbations
Trung Trinh
,
Markus Heinonen
,
Luigi Acerbi
,
Samuel Kaski
ICLR
2024
Input-Gradient Space Particle Inference for Neural Network Ensembles
Trung Trinh
,
Markus Heinonen
,
Luigi Acerbi
,
Samuel Kaski
ICML
2023
AbODE: Ab Initio Antibody Design Using Conjoined ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
ICMLW
2023
AbODE: Ab Initio Antibody Design Using Conjoined ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
ICMLW
2023
AbODE: Ab Initio Antibody Design Using Conjoined ODEs
Yogesh Verma
,
Markus Heinonen
,
Vikas Garg
NeurIPS
2023
Continuous-Time Functional Diffusion Processes
Giulio Franzese
,
Giulio Corallo
,
Simone Rossi
,
Markus Heinonen
,
Maurizio Filippone
,
Pietro Michiardi
ICLR
2023
Generative Modelling with Inverse Heat Dissipation
Severi Rissanen
,
Markus Heinonen
,
Arno Solin
AISTATS
2023
Incorporating Functional Summary Information in Bayesian Neural Networks Using a Dirichlet Process Likelihood Approach
Vishnu Raj
,
Tianyu Cui
,
Markus Heinonen
,
Pekka Marttinen
ICLR
2023
Latent Neural ODEs with Sparse Bayesian Multiple Shooting
Valerii Iakovlev
,
Cagatay Yildiz
,
Markus Heinonen
,
Harri Lähdesmäki
TMLR
2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
Magnus Ross
,
Markus Heinonen
TMLR
2023
Learning Representations That Are Closed-Form Monge Mapping Optimal with Application to Domain Adaptation
Oliver Struckmeier
,
Ievgen Redko
,
Anton Mallasto
,
Karol Arndt
,
Markus Heinonen
,
Ville Kyrki
NeurIPS
2023
Learning Space-Time Continuous Latent Neural PDEs from Partially Observed States
Valerii Iakovlev
,
Markus Heinonen
,
Harri Lähdesmäki
NeurIPS
2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
,
Samuel Kaski
,
Markus Heinonen
,
Vikas Garg
NeurIPSW
2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
,
Samuel Kaski
,
Markus Heinonen
,
Vikas Garg
NeurIPSW
2022
Modular Flows: Differential Molecular Generation
Yogesh Verma
,
Samuel Kaski
,
Markus Heinonen
,
Vikas Garg
ICML
2022
Tackling Covariate Shift with Node-Based Bayesian Neural Networks
Trung Q Trinh
,
Markus Heinonen
,
Luigi Acerbi
,
Samuel Kaski
UAI
2022
Variational Multiple Shooting for Bayesian ODEs with Gaussian Processes
Pashupati Hegde
,
Çağatay Yıldız
,
Harri Lähdesmäki
,
Samuel Kaski
,
Markus Heinonen
AISTATS
2021
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
,
Markus Heinonen
,
Edwin Bonilla
,
Zheyang Shen
,
Maurizio Filippone
ACML
2021
Bayesian Inference for Optimal Transport with Stochastic Cost
Anton Mallasto
,
Markus Heinonen
,
Samuel Kaski
ICML
2021
Continuous-Time Model-Based Reinforcement Learning
Cagatay Yildiz
,
Markus Heinonen
,
Harri Lähdesmäki
NeurIPS
2021
De-Randomizing MCMC Dynamics with the Diffusion Stein Operator
Zheyang Shen
,
Markus Heinonen
,
Samuel Kaski
ICLR
2021
Learning Continuous-Time PDEs from Sparse Data with Graph Neural Networks
Valerii Iakovlev
,
Markus Heinonen
,
Harri Lähdesmäki
AISTATS
2020
Learning Spectrograms with Convolutional Spectral Kernels
Zheyang Shen
,
Markus Heinonen
,
Samuel Kaski
NeurIPSW
2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
,
Henri Pesonen
,
Markus Heinonen
,
Jukka Corander
,
Samuel Kaski
ECML-PKDD
2019
Deep Convolutional Gaussian Processes
Kenneth Blomqvist
,
Samuel Kaski
,
Markus Heinonen
AISTATS
2019
Deep Learning with Differential Gaussian Process Flows
Pashupati Hegde
,
Markus Heinonen
,
Harri Lähdesmäki
,
Samuel Kaski
AISTATS
2019
Harmonizable Mixture Kernels with Variational Fourier Features
Zheyang Shen
,
Markus Heinonen
,
Samuel Kaski
NeurIPS
2019
ODE2VAE: Deep Generative Second Order ODEs with Bayesian Neural Networks
Cagatay Yildiz
,
Markus Heinonen
,
Harri Lahdesmaki
ICML
2018
Learning Unknown ODE Models with Gaussian Processes
Markus Heinonen
,
Cagatay Yildiz
,
Henrik Mannerström
,
Jukka Intosalmi
,
Harri Lähdesmäki
UAI
2018
Variational Zero-Inflated Gaussian Processes with Sparse Kernels
Pashupati Hegde
,
Markus Heinonen
,
Samuel Kaski
ACML
2017
A Mutually-Dependent Hadamard Kernel for Modelling Latent Variable Couplings
Sami Remes
,
Markus Heinonen
,
Samuel Kaski
NeurIPS
2017
Non-Stationary Spectral Kernels
Sami Remes
,
Markus Heinonen
,
Samuel Kaski
AISTATS
2016
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Markus Heinonen
,
Henrik Mannerström
,
Juho Rousu
,
Samuel Kaski
,
Harri Lähdesmäki
ACML
2016
Random Fourier Features for Operator-Valued Kernels
Romain Brault
,
Markus Heinonen
,
Florence Buc