Hensman, James

30 publications

ICLR 2025 KBLaM: Knowledge Base Augmented Language Model Xi Wang, Taketomo Isazawa, Liana Mikaelyan, James Hensman
NeurIPSW 2024 Inverse-Free Sparse Variational Gaussian Processes Stefano Cortinovis, Laurence Aitchison, James Hensman, Stefanos Eleftheriadis, Mark van der Wilk
NeurIPS 2024 QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L. Croci, Bo Li, Pashmina Cameron, Martin Jaggi, Dan Alistarh, Torsten Hoefler, James Hensman
ICLR 2024 SliceGPT: Compress Large Language Models by Deleting Rows and Columns Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, James Hensman
ICML 2022 Additive Gaussian Processes Revisited Xiaoyu Lu, Alexis Boukouvalas, James Hensman
NeurIPS 2021 Deep Neural Networks as Point Estimates for Deep Gaussian Processes Vincent Dutordoir, James Hensman, Mark van der Wilk, Carl Henrik Ek, Zoubin Ghahramani, Nicolas Durrande
UAI 2020 Amortized Variance Reduction for Doubly Stochastic Objective Ayman Boustati, Sattar Vakili, James Hensman, St John
AISTATS 2020 Bayesian Image Classification with Deep Convolutional Gaussian Processes Vincent Dutordoir, Mark Wilk, Artem Artemev, James Hensman
AISTATS 2020 Doubly Sparse Variational Gaussian Processes Vincent Adam, Stefanos Eleftheriadis, Artem Artemev, Nicolas Durrande, James Hensman
ICML 2020 Sparse Gaussian Processes with Spherical Harmonic Features Vincent Dutordoir, Nicolas Durrande, James Hensman
AISTATS 2019 Banded Matrix Operators for Gaussian Markov Models in the Automatic Differentiation Era Nicolas Durrande, Vincent Adam, Lucas Bordeaux, Stefanos Eleftheriadis, James Hensman
ICML 2019 Deep Gaussian Processes with Importance-Weighted Variational Inference Hugh Salimbeni, Vincent Dutordoir, James Hensman, Marc Deisenroth
ICML 2019 Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models Alessandro Davide Ialongo, Mark Van Der Wilk, James Hensman, Carl Edward Rasmussen
NeurIPS 2019 Pseudo-Extended Markov Chain Monte Carlo Christopher Nemeth, Fredrik Lindsten, Maurizio Filippone, James Hensman
NeurIPS 2018 Gaussian Process Conditional Density Estimation Vincent Dutordoir, Hugh Salimbeni, James Hensman, Marc Deisenroth
NeurIPS 2018 Infinite-Horizon Gaussian Processes Arno Solin, James Hensman, Richard E Turner
ICML 2018 Large-Scale Cox Process Inference Using Variational Fourier Features St John, James Hensman
NeurIPS 2018 Learning Invariances Using the Marginal Likelihood Mark van der Wilk, Matthias Bauer, St John, James Hensman
AISTATS 2018 Natural Gradients in Practice: Non-Conjugate Variational Inference in Gaussian Process Models Hugh Salimbeni, Stefanos Eleftheriadis, James Hensman
NeurIPS 2017 Convolutional Gaussian Processes Mark van der Wilk, Carl Edward Rasmussen, James Hensman
MLOSS 2017 GPflow: A Gaussian Process Library Using TensorFlow Alexander G. de G. Matthews, Mark van der Wilk, Tom Nickson, Keisuke Fujii, Alexis Boukouvalas, Pablo León-Villagrá, Zoubin Ghahramani, James Hensman
NeurIPS 2017 Identification of Gaussian Process State Space Models Stefanos Eleftheriadis, Tom Nicholson, Marc Deisenroth, James Hensman
AISTATS 2016 Chained Gaussian Processes Alan D. Saul, James Hensman, Aki Vehtari, Neil D. Lawrence
AISTATS 2016 On Sparse Variational Methods and the Kullback-Leibler Divergence Between Stochastic Processes Alexander G. de G. Matthews, James Hensman, Richard E. Turner, Zoubin Ghahramani
NeurIPS 2015 MCMC for Variationally Sparse Gaussian Processes James Hensman, Alexander G Matthews, Maurizio Filippone, Zoubin Ghahramani
AISTATS 2015 Scalable Variational Gaussian Process Classification James Hensman, Alexander G. de G. Matthews, Zoubin Ghahramani
AISTATS 2014 Hybrid Discriminative-Generative Approach with Gaussian Processes Ricardo Andrade Pacheco, James Hensman, Max Zwiessele, Neil D. Lawrence
AISTATS 2014 Tilted Variational Bayes James Hensman, Max Zwiessele, Neil D. Lawrence
UAI 2013 Gaussian Processes for Big Data James Hensman, Nicoló Fusi, Neil D. Lawrence
NeurIPS 2012 Fast Variational Inference in the Conjugate Exponential Family James Hensman, Magnus Rattray, Neil D. Lawrence