Hessel, Matteo

23 publications

NeurIPS 2025 DataRater: Meta-Learned Dataset Curation Dan A. Calian, Gregory Farquhar, Iurii Kemaev, Luisa Zintgraf, Matteo Hessel, Jeremy Shar, Junhyuk Oh, András György, Tom Schaul, Jeff Dean, Hado van Hasselt, David Silver
ICLR 2022 Learning by Directional Gradient Descent David Silver, Anirudh Goyal, Ivo Danihelka, Matteo Hessel, Hado van Hasselt
NeurIPS 2021 Discovery of Options via Meta-Learned Subgoals Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Kemaev, Hado P van Hasselt, David Silver, Satinder P. Singh
ICML 2021 Emphatic Algorithms for Deep Reinforcement Learning Ray Jiang, Tom Zahavy, Zhongwen Xu, Adam White, Matteo Hessel, Charles Blundell, Hado Van Hasselt
AAAI 2021 Expected Eligibility Traces Hado van Hasselt, Sephora Madjiheurem, Matteo Hessel, David Silver, André Barreto, Diana Borsa
ICML 2021 Muesli: Combining Improvements in Policy Optimization Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent Sifre, Theophane Weber, David Silver, Hado Van Hasselt
NeurIPS 2021 Self-Consistent Models and Values Greg Farquhar, Kate Baumli, Zita Marinho, Angelos Filos, Matteo Hessel, Hado P van Hasselt, David Silver
NeurIPS 2020 A Self-Tuning Actor-Critic Algorithm Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado P van Hasselt, David Silver, Satinder P. Singh
ICLR 2020 Behaviour Suite for Reinforcement Learning Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepesvari, Satinder Singh, Benjamin Van Roy, Richard Sutton, David Silver, Hado Van Hasselt
NeurIPS 2020 Discovering Reinforcement Learning Algorithms Junhyuk Oh, Matteo Hessel, Wojciech M. Czarnecki, Zhongwen Xu, Hado P van Hasselt, Satinder P. Singh, David Silver
NeurIPS 2020 Meta-Gradient Reinforcement Learning with an Objective Discovered Online Zhongwen Xu, Hado P van Hasselt, Matteo Hessel, Junhyuk Oh, Satinder P. Singh, David Silver
ICML 2020 Off-Policy Actor-Critic with Shared Experience Replay Simon Schmitt, Matteo Hessel, Karen Simonyan
ICML 2020 What Can Learned Intrinsic Rewards Capture? Zeyu Zheng, Junhyuk Oh, Matteo Hessel, Zhongwen Xu, Manuel Kroiss, Hado Van Hasselt, David Silver, Satinder Singh
NeurIPS 2019 Discovery of Useful Questions as Auxiliary Tasks Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Janarthanan Rajendran, Richard L. Lewis, Junhyuk Oh, Hado P van Hasselt, David Silver, Satinder Singh
AAAI 2019 Multi-Task Deep Reinforcement Learning with PopArt Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt, Hado van Hasselt
NeurIPS 2019 When to Use Parametric Models in Reinforcement Learning? Hado P van Hasselt, Matteo Hessel, John Aslanides
ICLR 2018 Distributed Prioritized Experience Replay Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt, David Silver
ICLR 2018 Noisy Networks for Exploration Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Matteo Hessel, Ian Osband, Alex Graves, Volodymyr Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, Charles Blundell, Shane Legg
AAAI 2018 Rainbow: Combining Improvements in Deep Reinforcement Learning Matteo Hessel, Joseph Modayil, Hado van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Gheshlaghi Azar, David Silver
ICML 2018 Transfer in Deep Reinforcement Learning Using Successor Features and Generalised Policy Improvement Andre Barreto, Diana Borsa, John Quan, Tom Schaul, David Silver, Matteo Hessel, Daniel Mankowitz, Augustin Zidek, Remi Munos
ICML 2017 The Predictron: End-to-End Learning and Planning David Silver, Hado Hasselt, Matteo Hessel, Tom Schaul, Arthur Guez, Tim Harley, Gabriel Dulac-Arnold, David Reichert, Neil Rabinowitz, Andre Barreto, Thomas Degris
ICML 2016 Dueling Network Architectures for Deep Reinforcement Learning Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, Nando Freitas
NeurIPS 2016 Learning Values Across Many Orders of Magnitude Hado P van Hasselt, Arthur Guez, Arthur Guez, Matteo Hessel, Volodymyr Mnih, David Silver